Projects per year
Fingerprint
Dive into the research topics where Thomas Krainer is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
- 1 Similar Profiles
Collaborations and top research areas from the last five years
Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
Projects
- 2 Finished
-
Special meeting: Penn State - Goettingen International Summer Schools in Mathematics
Krainer, T. (PI), Gil, J. B. (CoPI), Papikian, M. (CoPI), Tabachnikov, S. (CoPI) & Pesin, Y. B. (CoPI)
4/1/10 → 3/31/13
Project: Research project
-
RUI: Collaborative Research: Elliptic Partial Differential Equations on Singular Manifolds and Applications in Complex Geometry
Krainer, T. (PI) & Gil, J. B. (CoPI)
7/15/09 → 9/30/13
Project: Research project
-
Extensions of symmetric operators that are invariant under scaling and applications to indicial operators
Krainer, T., 2022, In: New York Journal of Mathematics. 28, p. 705-772 68 p.Research output: Contribution to journal › Article › peer-review
-
An explicit third-order one-step method for autonomous scalar initial value problems of first order based on quadratic taylor approximation
Krainer, T. & Zhou, C., 2020, In: Involve. 13, 2, p. 231-255 25 p.Research output: Contribution to journal › Article › peer-review
-
Elliptic complexes of first-order cone operators: ideal boundary conditions
Krainer, T. & Mendoza, G. A., Aug 2018, In: Mathematische Nachrichten. 291, 11-12, p. 1815-1850 36 p.Research output: Contribution to journal › Article › peer-review
-
The Friedrichs extension for elliptic wedge operators of second order
Krainer, T. & Mendoza, G. A., Mar 1 2018, In: Advances in Differential Equations. 23, 3-4, p. 295-328 34 p.Research output: Contribution to journal › Article › peer-review
3 Scopus citations -
Boundary value problems for first order elliptic wedge operators
Krainer, T. & Mendoza, G. A., Jun 2016, In: American Journal of Mathematics. 138, 3, p. 585-656 72 p.Research output: Contribution to journal › Article › peer-review
Open Access7 Scopus citations