Project Details
Description
CRCNS US-French Research Proposal: Neuronal circuit dynamics in zebrafish larvae: mechanisms, modulation, and
mathematical modeling of network topology and attractor dynamics.
Attractor neuronal circuits are recurrently connected networks whose temporal dynamics converge and settle to stable
patterns. Theoretical attractor models have been used to explain a variety of cognitive functions and motor behaviour.
Despite their importance for brain computations, a detailed description of physiological properties of these neuronal
circuits is still missing; and the mechanisms underlying the emergence of attractor-like dynamics remain elusive.
The Sumbre lab has recently shown that the optic tectum of the zebrafish larva is functionally organized according to
neuronal assemblies (groups of highly correlated neurons). These assemblies exhibit all-or- none synergistic
facilitation and competitive reciprocal inhibition generating single “winners.” Both are features of attractor dynamics.
In this project, the PIs will combine the experimental expertise of the Sumbre lab to monitor and analyze neuronal
circuit dynamics in the zebrafish larva, and the mathematical skills of the Curto lab, applied to the theoretical
investigation of attractor dynamics. More specifically, the Sumbre lab will use light-sheet microscopy and optogenetics
(jGCaMP7f and reaChR) to monitor and manipulate the population activity of neuronal attractor circuits in the
zebrafish larva. This approach will allow the detailed description of the physiological properties of neuronal attractor
circuits (e.g. cell-type description, functional properties of all single neurons, etc.), and to investigate the modulation of
the attractor dynamics by sensory experience and the internal state of the brain.
The Curto lab will use topological data analysis (TDA) methods for the analysis of the acquired datasets to investigate
higher-order correlations and the structure of functional connectivity within neuronal attractor circuits. In addition,
mathematical modeling will reveal the neuronal mechanisms underlying the circuit’s attractor dynamics and the
modulation of these dynamics. Principles learned from these theoretical approaches will then be tested experimentally
in the Sumbre lab, using optogenetics. This multidisciplinary and complementary project will bring novel insights on
the principles dictating the generation of neuronal attractor circuits and illuminate their functional role in the brain
computations.
Status | Finished |
---|---|
Effective start/end date | 9/23/20 → 8/31/24 |
Funding
- National Institute of Neurological Disorders and Stroke: $187,342.00
- National Institute of Neurological Disorders and Stroke: $200,625.00
- National Institute of Neurological Disorders and Stroke: $191,871.00
- National Institute of Neurological Disorders and Stroke: $196,304.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.