Project Details
Description
Coastal cities play a critical role in the global economy. However, they are being increasingly exposed to natural hazards and disasters, such as hurricanes, and recurrent flooding due to the rise of sea-levels caused by climate change. These disasters directly impact critical coastal infrastructure such as the energy, transportation, water, and sewer systems as well as streets, buildings and houses of coastal cities, thus adversely affecting the safety and well-being of their residents. The goal of this research is to create new paradigms for the resilient design of urban communities, and uniquely tailored toward the design of coastal cities, thus contributing to NSF's science and engineering mission. Results from this research will help make critical coastal infrastructures more tolerant to damage. The in turn will foster socio-economic resilience by enabling anticipatory interventions. The developed techniques and simulation models will redefine traditional urban design strategies through the integration of architecture, urban design, land-use planning, civil engineering, and advanced computational methods that explicitly consider socio-economic drivers. This project will be conducted in close collaboration with the cities of Miami and Miami Beach. In addition to these collaborations serving as as case studies for the proposed research, the research will directly and tangibly benefit high-risk coastal urban centers by providing them with clear, context-specific recommendations with respect to implementing resiliency. Broad dissemination efforts will be undertaken via a series of seminars for decision-makers and practitioners within the cities of Miami and Miami Beach. An exposition at the Miami Museum of Science will be organized to raise awareness and promote research on resiliency. The project will involve students via direct engagement in the research as well as via new learning modules that will integrate research findings into the existing curriculum. The proposed educational plan will thus help train a new workforce that is skilled in STEM disciplines, in general, and adept in resiliency planning of coastal cities, in particular. In addition to serving NSF's science mission, therefore, this project also serves its education mission.
This transformative research will introduce a novel methodological approach that symbiotically integrates urban design and socio-economic considerations into an advanced simulation and optimization framework to enhance the resilience of a coastal city's critical infrastructure. This human-centered computational framework will help identify key resilient infrastructures, and design and land use patterns that will increase the damage tolerance of coastal cities while reducing the socio-economic impacts of coastal hazards and disasters. The proposed approach will bring together an interdisciplinary set of collaborators from engineering, architecture, and social sciences, to yield several key innovations: 1) a holistic human-centered computational framework for the design of resilient cities; 2) identification of key typologies, morphologies and their interdependencies by analyzing the urban design and its infrastructure networks; 3) an innovative flexible modeling and computational framework that integrate socio-economic characteristics for simulation and resilience optimization (damage tolerance) of the critical infrastructure; 4) a novel optimization framework that will facilitate making damage tolerance decisions that can achieve anticipatory resilience in face of disaster uncertainty; and 5) new identified interdependences, trends, and typologies of socio-economic system of highly-urbanized coastal communities based on the cities of Miami and Miami Beach in Florida. In summary, the proposed research will lay the scientific foundation for envisioning and redesigning resilient coastal cities making them ready to meet anticipated future challenges.
Status | Finished |
---|---|
Effective start/end date | 10/1/15 → 12/31/19 |
Funding
- National Science Foundation: $299,579.00