Project Details
Description
The study of hazards and renewable energy are paramount for the development and sustainability of society. Similarly, the emergence of new climatic patterns pose new challenges for future societal planning. Geospatial data are being generated at unprecedented rate exceeding our analysis capabilities and leading towards a data-rich but knowledge-poor environment. The use of advanced computing tools and techniques are playing an increasingly important role in contributing to solutions to problems of societal importance. This project will create specialized computational tools that will enhance the ability of scientists to effectively and efficiently study natural hazards and renewable energy. The use of these tools will support novel methods and the use of powerful computing resources in ways that are not currently possible.
Many scientific applications in the geosciences are increasingly reliant on 'ensemble-based' methods to make scientific progress. This is true for applications that are both net producers of data, as well as aggregate consumers of data. In response to the growing importance and pervasiveness of ensemble-based applications and analysis, and to address the challenges of scale, simplicity and flexibility, the research team will develop the Ensemble Toolkit for Earth Sciences. The Ensemble Toolkit will provide an important addition to the set of capabilities and tools that will enable the geosciences community to use high-performance computing resources more efficiently, effectively and in an extensible fashion. This project represents the co-design of Ensemble Toolkit for Earth Sciences and is a collective effort of an interdisciplinary team of cyberinfrastructure and domain scientists. It will also support the integration of the Ensemble Toolkit with a range of science applications, as well as its use in solving scientific problems of significant societal impact that are currently unable to utilize the collective capacity of supercomputers, campus clusters and clouds
Status | Finished |
---|---|
Effective start/end date | 9/1/16 → 8/31/20 |
Funding
- National Science Foundation: $391,000.00