Project Details
Description
ABSTRACT
Human complex traits are jointly influenced by genetic and environmental risk factors, whose exact
contributions are often subject to extensive debate. Detailed environmental risk factors are not often available,
which makes it hard to jointly assess the genetic and environmental contributions. Yet, the emergence of large-
scale national biobanks as well international genetic studies offers a great opportunity to make up for this
knowledge gap. In particular, as study participants come from diverse locations, geospatial information of the
study participants can be used as a proxy for environmental exposure. Models that incorporate geospatial
information of study participants will lead to improved power for association analysis and more accurate
heritability estimates. In this application, we propose to develop a Spatial MIxed Linear Effect model (SMILE)
for improved association analysis and heritability estimation and Spatial Meta-Analysis Regression Test
(SMART) for more powerful meta-analyses of genetic association studies. We will apply them to UK Biobank,
MarketScan insurance billing database, TOPMed sequence data, and various large consortia studies on
smoking/drinking addictions, lipids levels, and diabetes. To achieve the proposed research aims, we assembled
a strong research team with complementary expertise from statistical genetics, addiction genetics, lung function
genetics, biomedical informatics, and environmental epidemiology. Methods and tools developed from this
study will open up new avenues for analyzing national biobanks such as UK Biobank and All of Us cohorts, and
global consortium studies. The results from this study will help elucidate the genetic architecture of complex
traits with significant
Status | Finished |
---|---|
Effective start/end date | 6/20/23 → 3/31/24 |
Funding
- National Institute of Environmental Health Sciences: $288,010.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.