Project Details
Description
ABSTRACT
The advent of protein design in recent years has brought us within reach of developing a “nanoscale
programing language,” in which molecules serve as operands with their conformational states functioning as
logical gates. Combining these operands into larger molecules and molecular complexes through protein
engineering will allow us to write and execute “code” using nanoscale computing agents (NCAs). These agents
would respond to any given input and return a desired output signal. While the speed of the “computation” will
be significantly slower than that of inorganic silicon-based computers, one cell can contain more NCAs than
the number of CPUs in any supercomputer currently in existence. The ability to utilize natural evolutionary
processes would allow code to “evolve” in the course of computation, thus enabling radically new algorithmic
developments. NCAs will revolutionize the studies of biological systems, enable a deeper understanding of
human biology and disease, and facilitate development of in situ precision therapeutics. Since NCAs can be
extended to novel reactions and processes not seen in biological systems, growth of this field will spark the
growth of biotechnological applications with wide-ranging impact, including to fields not typically considered
relevant to biology. Unlike traditional approaches in synthetic biology that are based on rewiring of signaling
pathways in cells, NCAs are autonomous vehicles based on single chain proteins. NCAs offer an orthogonal
and complementary means for controlling cellular phenotypes. In the past 12 years, our group has developed
technology toward this end, by engineering proteins that can be controlled by light and small molecules. We
designed functional prototypes that have already offered valuable insights in the cellular motility field. Here, we
plan to (i) further expand the repertoire of NCA inputs, (ii) include other biological molecules, such as RNA, in
our library of NCAs, and (iii) expand the portfolio of methods for “writing” algorithms at the nanoscale level. The
main objectives of this proposal are: (1) Extend the repertoire of inputs for regulation of proteins. We plan
to utilize/design proteins that respond to pH and temperature via conformational change in order to modulate
the activities of target proteins. (2) Extend our approaches to model and regulate RNA molecules. No tools
currently exist for computational evaluation of small molecule binding to RNA (the docking problem). Modeling
the structure and dynamics of RNA is challenging due to backbone flexibility. We plan to develop a platform to
address both the RNA structure and small molecule docking problems. (3) Develop tools to rationally design
allosteric networks in proteins. The technology to “rewire” allosteric networks in proteins does not exist yet.
Capitalizing on our method for mapping allostery, we plan to build a search algorithm that will iteratively rewire
communication pathways between distal protein sites. Addressing these challenges will provide a significant
leap in technology for programming living cells. While the research directions outlined in this proposal are
ambitious, we and others have created the basis for this technology to be feasible and within reach.
Status | Active |
---|---|
Effective start/end date | 1/1/20 → 12/31/24 |
Funding
- National Institute of General Medical Sciences: $180,535.00
- National Institute of General Medical Sciences: $477,979.00
- National Institute of General Medical Sciences: $664,882.00
- National Institute of General Medical Sciences: $96,000.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.