Project: Research project

Project Details


Surface energy and water vapor fluxes play a critical role in understanding the response of agro-ecosystems to changes in environmental and atmospheric parameters. These fluxes play a crucial role in exploring the dynamics of water and energy use efficiencies of these systems. Quantification of the fluxes is also necessary for assessing the impact of land use and management changes on water balances. Accomplishing these goals requires measurement of water vapor and energy exchanges between various vegetation surfaces and microclimates for long-enough periods to empathize the behavior and dynamics involved with the flux transfer. Other networks of flux towers have been collecting data on exchange processes between biosphere and atmosphere for multiple years across the globe to better understand the functioning of terrestrial ecosystems and their role in regional and/or continental and global carbon, water, and energy cycles. However, there is an imperative need for these kinds of networks to increase in intensity due to the great diversity among ecosystems and agro-ecosystems in species composition, physiological properties, physical structure, microclimatic and climatic conditions, and great diversity in management practices. Since water use is impacted greatly by local atmospheric, soil, and management conditions, the existing flux networks cannot provide information and data on water use of various cropping systems on a given local or regional level. Measurement of water use of diverse vegetation surfaces will enable water regulatory agencies and water users to make timely and better decisions on water resources planning, management, and allocation. The Nebraska Water and Energy Flux Measurement, Modeling, and Research Network (NEBFLUX) is a comprehensive network that is designed to measure surface energy and water vapor fluxes, microclimatic variables, plant physiological parameters, soil water content, surface characteristics, and their interactions for various vegetation surfaces. The NEBFLUX is a network of micrometeorological tower sites that uses mainly Bowen ratio energy balance systems (BREBS) to measure surface water vapor and energy fluxes between terrestrial agro-ecosystems and microclimate. At present, ten BREBSs and one eddy covariance system are operating on a long-term and continuous basis for vegetation surfaces ranging from tilled and untilled irrigated and rainfed croplands, irrigated and rainfed grasslands, to Phragmites (Phragmites australis)-dominated cottonwood (Populus deltiodes var. occidentalis) and willow stand (Willow salix) plant communities. The NEBFLUX project will provide good quality flux and other extensive supportive data on plant physiology [leaf area index, stomatal resistance, within-canopy radiation parameters, productivity (yield and/or biomass), and plant height], soil characteristics, soil water content, and surface characteristics to the micrometeorology, water resources engineering, and science community on broad spectrum of agro-ecosystems.

Effective start/end date8/1/107/31/15


  • National Institute of Food and Agriculture


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.