SBIR Phase I: A novel platform for virus enrichment and isolation

Project: Research project

Project Details

Description

The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project will be the creation of a virus capture technology that may improve the reliability of diagnostic tools needed to detect viral infection in humans, animals, and plants. The proposed device will be designed to be easy to use, portable, and cost-effective, and could accelerate virus detection, providing superior analytical and clinical performance. Early and accurate diagnosis of infectious diseases is critical to curbing the spread of viral infections, improving health outcomes, and reducing economic losses. This technology is a platform potentially applicable to a wide range of target viruses and could be functional in different scenarios like virus surveillance, identification of emerging viruses, and detection of virus mutations. The proposed project seeks to validate the technical feasibility of this technology for direct virus detection methods such as polymerase chain reaction (PCR), immunoassay, and next generation sequencing (NGS), to improve the virus to host ratio and allow for faster results. The project aims to develop a portable sample processing platform that enables high-efficiency virus trapping and purification from field samples (from cotton swabs or tissue biopsy) without using antibodies. This technology uses carbon nanotube arrays to trap virus particles by size discrimination while segregating host contaminants. This technology could be integrated into standard virus diagnostic protocols to achieve a faster, simpler, and more accurate diagnostics compared to traditional processes for virus sample preparation, such as ultracentrifugation and membrane filtration. Currently available state-of-the-art technologies present limitations in extracting pure virus particles from the host material, especially when the viral content is low, usually leading to false negative results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
StatusActive
Effective start/end date6/30/188/31/24

Funding

  • National Science Foundation: $274,459.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.