TY - JOUR
T1 - β-Carotene-9',10'-oxygenase status modulates the impact of dietary tomato and lycopene on hepatic nuclear receptor-, stress-, and metabolism-related gene expression in mice
AU - Tan, Hsueh Li
AU - Moran, Nancy E.
AU - Cichon, Morgan J.
AU - Riedl, Ken M.
AU - Schwartz, Steven J.
AU - Erdman, John W.
AU - Pearl, Dennis K.
AU - Thomas-Ahner, Jennifer M.
AU - Clinton, Steven K.
PY - 2014/4
Y1 - 2014/4
N2 - Tomato and lycopene (ψ, ψ-carotene) consumption is hypothesized to protect against nonalcoholic steatohepatitis and hepatocarcinogenesis, processes that may depend upon diet and gene interactions. To investigate the interaction of tomato or lycopene feeding with β-carotene-9',10'-monooxygenase (Bco2) on hepatic metabolic and signaling pathways, male wild-type (WT) and Bco2-/- mice (3-wk-old; n = 36) were fed semi-purified control, 10% tomato powder-containing, or 0.25% lycopene beadlet-containing diets for 3 wk. Serum lycopene concentrations were higher in lycopene-and tomato-fed Bco2-/- mice compared with WT (P = 0.03). Tomato-and lycopene-fed mice had detectable hepatic apolipoprotein (apo)-6'-, apo-8'-, and apo-12'-lycopenal concentrations. Hepatic expression of β-carotene-15,15'-monooxygenase was increased in Bco2-/- mice compared with WT (P = 0.02), but not affected by diet. Evaluation of hepatic gene expression by focused quantitative reverse transcriptase-polymerase chain reaction arrays for nuclear receptors and coregulators (84 genes) and stress and metabolism (82 genes) genes indicates that tomato feeding affected 31 genes (≥1.5-fold, P < 0.05) and lycopene feeding affected 19 genes, 16 of which were affected by both diets. Lycopene down-regulation of 7 nuclear receptors and coregulators, estrogen-related receptor-α, histone deacetylase 3, nuclear receptor coactivator 4, RevErbA-β, glucocorticoid receptor, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ, coactivator 1 β was dependent upon interaction with Bco2 status. Lycopene and tomato feeding induced gene expression patterns consistent with decreased lipid uptake, decreased cell proliferation and mitosis, down-regulated aryl hydrocarbon receptor signaling, and decreased expression of genes involved in retinoid X receptor heterodimer activation. Tomato feeding also caused expression changes consistent with down-regulation of DNA synthesis and terpenoid metabolism. These data suggest tomato components, particularly lycopene, affect hepatic gene expression, potentially affecting hepatic responses to metabolic, infectious, or chemical stress.
AB - Tomato and lycopene (ψ, ψ-carotene) consumption is hypothesized to protect against nonalcoholic steatohepatitis and hepatocarcinogenesis, processes that may depend upon diet and gene interactions. To investigate the interaction of tomato or lycopene feeding with β-carotene-9',10'-monooxygenase (Bco2) on hepatic metabolic and signaling pathways, male wild-type (WT) and Bco2-/- mice (3-wk-old; n = 36) were fed semi-purified control, 10% tomato powder-containing, or 0.25% lycopene beadlet-containing diets for 3 wk. Serum lycopene concentrations were higher in lycopene-and tomato-fed Bco2-/- mice compared with WT (P = 0.03). Tomato-and lycopene-fed mice had detectable hepatic apolipoprotein (apo)-6'-, apo-8'-, and apo-12'-lycopenal concentrations. Hepatic expression of β-carotene-15,15'-monooxygenase was increased in Bco2-/- mice compared with WT (P = 0.02), but not affected by diet. Evaluation of hepatic gene expression by focused quantitative reverse transcriptase-polymerase chain reaction arrays for nuclear receptors and coregulators (84 genes) and stress and metabolism (82 genes) genes indicates that tomato feeding affected 31 genes (≥1.5-fold, P < 0.05) and lycopene feeding affected 19 genes, 16 of which were affected by both diets. Lycopene down-regulation of 7 nuclear receptors and coregulators, estrogen-related receptor-α, histone deacetylase 3, nuclear receptor coactivator 4, RevErbA-β, glucocorticoid receptor, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ, coactivator 1 β was dependent upon interaction with Bco2 status. Lycopene and tomato feeding induced gene expression patterns consistent with decreased lipid uptake, decreased cell proliferation and mitosis, down-regulated aryl hydrocarbon receptor signaling, and decreased expression of genes involved in retinoid X receptor heterodimer activation. Tomato feeding also caused expression changes consistent with down-regulation of DNA synthesis and terpenoid metabolism. These data suggest tomato components, particularly lycopene, affect hepatic gene expression, potentially affecting hepatic responses to metabolic, infectious, or chemical stress.
UR - http://www.scopus.com/inward/record.url?scp=84896449512&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896449512&partnerID=8YFLogxK
U2 - 10.3945/jn.113.186676
DO - 10.3945/jn.113.186676
M3 - Article
C2 - 24553694
AN - SCOPUS:84896449512
SN - 0022-3166
VL - 144
SP - 431
EP - 439
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 4
ER -