Abstract

Exposure to the environmental toxin β-methylamino-L-alanine (BMAA) is linked to amyotrophic lateral sclerosis (ALS), but its disease-promoting mechanism remains unknown. We propose that incorporation of BMAA into the ALS-linked protein Cu,Zn superoxide dismutase (SOD1) upon translation promotes protein misfolding and aggregation, which has been linked to ALS onset and progression. Using molecular simulation and predictive energetic computation, we demonstrate that substituting any serine with BMAA in SOD1 results in structural destabilization and aberrant dynamics, promoting neurotoxic SOD1 aggregation. We propose that translational incorporation of BMAA into SOD1 is directly responsible for its toxicity in neurodegeneration, and BMAA modification of SOD1 may serve as a biomarker of ALS.

Original languageEnglish (US)
Article numbere1007225
JournalPLoS computational biology
Volume15
Issue number7
DOIs
StatePublished - Jul 2019

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'β-Methylamino-L-alanine substitution of serine in SOD1 suggests a direct role in ALS etiology'. Together they form a unique fingerprint.

Cite this