βHavy-spectrin has a restricted tissue and subcellular distribution during Drosophila embryogenesis

Graham H. Thomas, Daniel P. Kiehart

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

The components of the membrane skeleton play an important role in maintaining membrane structure during the dynamic changes in cell shape that characterize development, βHeavy-spectrin is a unique β-spectrin from Drosophila melanogaster that is closer in size (Mr=430×103) to dystrophin than to other β-spectrin members of the spectrin/α-actinin/dystrophin gene super-family. Here we establish that both the subcellular localization of the βHeavy-spectrin protein and the tissue distribution of βHeavy-spectrin transcript accumulation change dramatically during embryonic development. Maternally loaded protein is uniformly distributed around the plasma membrane of the egg. During cellularization it is associated with the invaginating furrow canals and in a region of the lateral membranes at the apices of the forming cells (apicolateral). During gastrulation the apicolateral staining remains and is joined by a new apical cap, or plate, of βHeavy-spectrin in areas where morphogenetic movements occur. These locations include the ventral and cephalic furrows and the posterior midgut invagination. Thus, dynamic rearrangement of the subcellular distribution of the protein is precisely coordinated with changes in cell shape. Zygotic message and protein accumulate after the germ band is fully extended, in the musculature, epidermis, hindgut, and trachea of the developing embryo, βHeavy-spectrin in the epidermis, hindgut, and trachea is apically localized, while the protein in the somatic and visceral musculature is not obviously polarized. The distribution of βHeavy-spectrin suggests roles in establishing an apicolateral membrane domain that is known to be rich in intercellular junctions and in establishing a unique membrane domain associated with contractile processes.

Original languageEnglish (US)
Pages (from-to)2039-2050
Number of pages12
JournalDevelopment
Volume120
Issue number7
StatePublished - Jul 1994

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Developmental Biology

Fingerprint

Dive into the research topics of 'βHavy-spectrin has a restricted tissue and subcellular distribution during Drosophila embryogenesis'. Together they form a unique fingerprint.

Cite this