Abstract
Piezoelectric micromachined ultrasound transducers (PMUT) incorporating lead zirconate titanate PbZr0.52 Ti0.48 O3 (PZT) thin films were investigated for miniaturized high-frequency ultrasound systems. A recently developed process to remove a PMUT from an underlying silicon (Si) substrate has enabled curved arrays to be readily formed. This research aimed to improve the design of flexible PMUT arrays using PZFlex, a finite element method software package. A 10 MHz PMUT 2D array working in 3-1 mode was designed. A circular unit-cell was structured from the top, with concentric layers of platinum (Pt)/PZT/Pt/titanium (Ti) on a polyimide (PI) substrate. Pulse-echo and spectral response analyses predicted a center frequency of 10 MHz and bandwidth of 87% under water load and air backing. A 2D array, consisting of the 256 (16 × 16) unit-cells, was created and characterized in terms of pulse-echo and spectral responses, surface displacement profiles, crosstalk, and beam profiles. The 2D array showed: decreased bandwidth due to protracted oscillation decay and guided wave effects; mechanical focal length at 2.9 mm; 3.7 mm depth of field for-6 dB; and-55.6 dB crosstalk. Finite element-based virtual prototyping identified figures of merit—center frequency, bandwidth, depth of field, and crosstalk—that could be optimized to design robust, flexible PMUT arrays.
Original language | English (US) |
---|---|
Article number | 4335 |
Pages (from-to) | 1-25 |
Number of pages | 25 |
Journal | Sensors (Switzerland) |
Volume | 20 |
Issue number | 15 |
DOIs | |
State | Published - Aug 1 2020 |
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Information Systems
- Atomic and Molecular Physics, and Optics
- Biochemistry
- Instrumentation
- Electrical and Electronic Engineering