TY - JOUR
T1 - 120 mm single-crystalline perovskite and wafers
T2 - towards viable applications
AU - Liu, Yucheng
AU - Ren, Xiaodong
AU - Zhang, Jing
AU - Yang, Zhou
AU - Yang, Dong
AU - Yu, Fengyang
AU - Sun, Jiankun
AU - Zhao, Changming
AU - Yao, Zhun
AU - Wang, Bo
AU - Wei, Qingbo
AU - Xiao, Fengwei
AU - Fan, Haibo
AU - Deng, Hao
AU - Deng, Liangping
AU - Liu, Shengzhong Frank
N1 - Publisher Copyright:
© 2017, Science China Press and Springer-Verlag GmbH Germany.
PY - 2017/10/1
Y1 - 2017/10/1
N2 - As the large single-crystalline silicon wafers have revolutionized many industries including electronics and solar cells, it is envisioned that the availability of large single-crystalline perovskite crystals and wafers will revolutionize its broad applications in photovoltaics, optoelectronics, lasers, photodetectors, light emitting diodes (LEDs), etc. Here we report a method to grow large single-crystalline perovskites including single-halide crystals: CH3NH3PbX3 (X=I, Br, Cl), and dual-halide ones: CH3NH3Pb(ClxBr1−x)3 and CH3NH3Pb(BrxI1−x)3, with the largest crystal being 120 mm in length. Meanwhile, we have advanced a process to slice the large perovskite crystals into thin wafers. It is found that the wafers exhibit remarkable features: (1) its trap-state density is a million times smaller than that in the microcrystalline perovskite thin films (MPTF); (2) its carrier mobility is 410 times higher than its most popular organic counterpart P3HT; (3) its optical absorption is expanded to as high as 910 nm comparing to 797 nm for the MPTF; (4) while MPTF decomposes at 150 °C, the wafer is stable at high temperature up to 270 °C; (5) when exposed to high humidity (75% RH), MPTF decomposes in 5 h while the wafer shows no change for overnight; (6) its photocurrent response is 250 times higher than its MPTF counterpart. A few electronic devices have been fabricated using the crystalline wafers. Among them, the Hall test gives low carrier concentration with high mobility. The trap-state density is measured much lower than common semiconductors. Moreover, the large SC-wafer is found particularly useful for mass production of integrated circuits. By adjusting the halide composition, both the optical absorption and the light emission can be fine-tuned across the entire visible spectrum from 400 nm to 800 nm. It is envisioned that a range of visible lasers and LEDs may be developed using the dual-halide perovskites. With fewer trap states, high mobility, broader absorption, and humidity resistance, it is expected that solar cells with high stable efficiency maybe attainable using the crystalline wafers.
AB - As the large single-crystalline silicon wafers have revolutionized many industries including electronics and solar cells, it is envisioned that the availability of large single-crystalline perovskite crystals and wafers will revolutionize its broad applications in photovoltaics, optoelectronics, lasers, photodetectors, light emitting diodes (LEDs), etc. Here we report a method to grow large single-crystalline perovskites including single-halide crystals: CH3NH3PbX3 (X=I, Br, Cl), and dual-halide ones: CH3NH3Pb(ClxBr1−x)3 and CH3NH3Pb(BrxI1−x)3, with the largest crystal being 120 mm in length. Meanwhile, we have advanced a process to slice the large perovskite crystals into thin wafers. It is found that the wafers exhibit remarkable features: (1) its trap-state density is a million times smaller than that in the microcrystalline perovskite thin films (MPTF); (2) its carrier mobility is 410 times higher than its most popular organic counterpart P3HT; (3) its optical absorption is expanded to as high as 910 nm comparing to 797 nm for the MPTF; (4) while MPTF decomposes at 150 °C, the wafer is stable at high temperature up to 270 °C; (5) when exposed to high humidity (75% RH), MPTF decomposes in 5 h while the wafer shows no change for overnight; (6) its photocurrent response is 250 times higher than its MPTF counterpart. A few electronic devices have been fabricated using the crystalline wafers. Among them, the Hall test gives low carrier concentration with high mobility. The trap-state density is measured much lower than common semiconductors. Moreover, the large SC-wafer is found particularly useful for mass production of integrated circuits. By adjusting the halide composition, both the optical absorption and the light emission can be fine-tuned across the entire visible spectrum from 400 nm to 800 nm. It is envisioned that a range of visible lasers and LEDs may be developed using the dual-halide perovskites. With fewer trap states, high mobility, broader absorption, and humidity resistance, it is expected that solar cells with high stable efficiency maybe attainable using the crystalline wafers.
UR - http://www.scopus.com/inward/record.url?scp=85024481550&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85024481550&partnerID=8YFLogxK
U2 - 10.1007/s11426-017-9081-3
DO - 10.1007/s11426-017-9081-3
M3 - Article
AN - SCOPUS:85024481550
SN - 1674-7291
VL - 60
SP - 1367
EP - 1376
JO - Science China Chemistry
JF - Science China Chemistry
IS - 10
ER -