13C metabolic flux analysis at a genome-scale

Saratram Gopalakrishnan, Costas D. Maranas

Research output: Contribution to journalArticlepeer-review

68 Scopus citations


Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non-zero flux for the arginine degradation pathway was identified to meet biomass precursor demands as detailed in the iAF1260 model. Inferred ranges for 81% of the reactions in the genome-scale metabolic (GSM) model varied less than one-tenth of the basis glucose uptake rate (95% confidence test). This is because as many as 411 reactions in the GSM are growth coupled meaning that the single measurement of biomass formation rate locks the reaction flux values. This implies that accurate biomass formation rate and composition are critical for resolving metabolic fluxes away from central metabolism and suggests the importance of biomass composition (re)assessment under different genetic and environmental backgrounds. In addition, the loss of information associated with mapping fluxes from MFA on a core model to a GSM model is quantified.

Original languageEnglish (US)
Pages (from-to)12-22
Number of pages11
JournalMetabolic engineering
StatePublished - Nov 1 2015

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology


Dive into the research topics of '13C metabolic flux analysis at a genome-scale'. Together they form a unique fingerprint.

Cite this