TY - GEN
T1 - 1D Shape matching of a lithium-ion battery actuator
AU - Gonzalez, Cody
AU - Shan, Shuhua
AU - Frecker, Mary
AU - Rahn, Christopher
N1 - Funding Information:
The authors gratefully acknowledge the support of the National Science Foundation under Grant No. 1662055.
Publisher Copyright:
© 2021 by ASME.
PY - 2021
Y1 - 2021
N2 - Silicon anodes have been demonstrated to provide significant actuation in addition to energy storage in lithium-ion batteries (LIBs). This work studies the optimization of 1D unimorph and bimorph actuators to achieve a target shape upon actuation. A 1D shape matching with design optimization is used to estimate the varied charge distribution along the length for a LIB actuator and thereby the effect of distance between electrodes in charging. A genetic algorithm (GA) is used with actuation strain distribution as the design variable. The objective of the optimization is to shape-match by minimizing the shape error between a target shape and actuated shape, both defined by several points along the length. The approach is experimentally validated by shape matching a notched unimorph target shape. A shape error of 1.5% is obtained. An optimized unimorph converges to an objective function of less than 0.029% of the length at full state of charge (SOC) for a 5-segment beam. A second shape matching case study using a bimorph is investigated to showcase the tailorability of LIB actuators. The optimal bimorph achieves an objective function of less than 0.23% of the length for a design variable set of top and bottom actuation strain of an 8-segment beam. The actuated shape nearly matches the target shape by simultaneously activating top and bottom active layers to achieve the same differential actuation strain (the difference between top and bottom active layer actuation strain). The results show that a bimorph actuator can achieve a given shape while also storing significantly more charge than is necessary to maintain a given complex shape. This demonstrates a strength of energy storage based actuators: Excess energy can be stored within the actuator and can be expended without affecting the work done or the shape maintained by the actuator.
AB - Silicon anodes have been demonstrated to provide significant actuation in addition to energy storage in lithium-ion batteries (LIBs). This work studies the optimization of 1D unimorph and bimorph actuators to achieve a target shape upon actuation. A 1D shape matching with design optimization is used to estimate the varied charge distribution along the length for a LIB actuator and thereby the effect of distance between electrodes in charging. A genetic algorithm (GA) is used with actuation strain distribution as the design variable. The objective of the optimization is to shape-match by minimizing the shape error between a target shape and actuated shape, both defined by several points along the length. The approach is experimentally validated by shape matching a notched unimorph target shape. A shape error of 1.5% is obtained. An optimized unimorph converges to an objective function of less than 0.029% of the length at full state of charge (SOC) for a 5-segment beam. A second shape matching case study using a bimorph is investigated to showcase the tailorability of LIB actuators. The optimal bimorph achieves an objective function of less than 0.23% of the length for a design variable set of top and bottom actuation strain of an 8-segment beam. The actuated shape nearly matches the target shape by simultaneously activating top and bottom active layers to achieve the same differential actuation strain (the difference between top and bottom active layer actuation strain). The results show that a bimorph actuator can achieve a given shape while also storing significantly more charge than is necessary to maintain a given complex shape. This demonstrates a strength of energy storage based actuators: Excess energy can be stored within the actuator and can be expended without affecting the work done or the shape maintained by the actuator.
UR - http://www.scopus.com/inward/record.url?scp=85118147878&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85118147878&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2021-67508
DO - 10.1115/SMASIS2021-67508
M3 - Conference contribution
AN - SCOPUS:85118147878
T3 - Proceedings of ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2021
BT - Proceedings of ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2021
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2021
Y2 - 14 September 2021 through 15 September 2021
ER -