Abstract
Additive manufacturing is a popular method for prototyping and manufacturing custom parts, especially on college campuses. While there is widespread use of 3D printers as part of many engineering classwork, there is little regulation or knowledge regarding emissions. Many plastics, including polycarbonates, ABS, and PLA are known to emit high counts of volatile organic compounds (VOCs) and particulate matters (PMs). This study focuses on VOC and PM counts in several natural environments and dedicated “maker spaces” on a large college campus to gauge the exposure that students and operators experience. Emissions were measured using a photoionization detector and two particle sizers. The photoionization detector measured total VOCs, and the particle size counters measured both total nanoparticles and individual micro-particles based on relative particle diameter. Measurements were taken in hourly increments and then analyzed to determine the degree with which desktop printers emitted VOCs and PM. Our data can be used to determine whether additional ventilation or filtration is needed when 3D printing “in the wild” to enhance operator and bystander safety.
Original language | English (US) |
---|---|
Pages | 2456-2469 |
Number of pages | 14 |
State | Published - 2016 |
Event | 27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016 - Austin, United States Duration: Aug 8 2016 → Aug 10 2016 |
Conference
Conference | 27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2016 |
---|---|
Country/Territory | United States |
City | Austin |
Period | 8/8/16 → 8/10/16 |
All Science Journal Classification (ASJC) codes
- Surfaces and Interfaces
- Surfaces, Coatings and Films