TY - GEN
T1 - 3d structuring of magnetoelastomers for anisotropic actuation properties
AU - Atescan, Yagmur
AU - Yamamoto, Namiko
N1 - Funding Information:
This work was supported by the Office of Naval Research, Grant No. N00014161217, and the Pennsylvania State University (PSU) Department of Aerospace Engineering. The authors would also like to thank Tim Stecko of the Quantitative Imaging Laboratory at Pennsylvania State University for his assistance with the microCT measurements.
Publisher Copyright:
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - Smart structures with actuation function are desired for aerospace applications, including morphing airfoils, deployable structures and more. While shape memory alloys and piezoelectric ceramics and polymers are currently a popular smart material options for such applications, magnetoelastomers (MEs) can be uniquely actuated with application of non-contact magnetic field. Magnetoelastomers (MEs), composite materials made of magnetic particles and soft, non-magnetic matrix, can potentially contribute to such smart structures as a light-weight, smart material option with large strain change, fast response time (milliseconds) and anisotropic actuation properties. Other than aerospace applications, MEs, as soft actuators, have been investigated for flexible electronics, soft robotics, and biomedical applications. Anisotropic actuation properties of MEs can be controlled with particle organization within the elastomer. To provide this control, parametric studies on fabrication of MEs need to be performed. This study presents experimental work on nanoparticle organization within MEs using uniaxial, biaxial and triaxial magnetic fields and on the structure-property relationships of MEs. Iron oxide nanoparticles were used as a model nanofillers, and their surfaces were treated with silane coupling agent to improve dispersion and suspension within a polydimethylsiloxane (PDMS) elastomer. The fabricated MEs were inspected using microCT, and their anisotropic susceptibilities are being measured.
AB - Smart structures with actuation function are desired for aerospace applications, including morphing airfoils, deployable structures and more. While shape memory alloys and piezoelectric ceramics and polymers are currently a popular smart material options for such applications, magnetoelastomers (MEs) can be uniquely actuated with application of non-contact magnetic field. Magnetoelastomers (MEs), composite materials made of magnetic particles and soft, non-magnetic matrix, can potentially contribute to such smart structures as a light-weight, smart material option with large strain change, fast response time (milliseconds) and anisotropic actuation properties. Other than aerospace applications, MEs, as soft actuators, have been investigated for flexible electronics, soft robotics, and biomedical applications. Anisotropic actuation properties of MEs can be controlled with particle organization within the elastomer. To provide this control, parametric studies on fabrication of MEs need to be performed. This study presents experimental work on nanoparticle organization within MEs using uniaxial, biaxial and triaxial magnetic fields and on the structure-property relationships of MEs. Iron oxide nanoparticles were used as a model nanofillers, and their surfaces were treated with silane coupling agent to improve dispersion and suspension within a polydimethylsiloxane (PDMS) elastomer. The fabricated MEs were inspected using microCT, and their anisotropic susceptibilities are being measured.
UR - http://www.scopus.com/inward/record.url?scp=85092355686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092355686&partnerID=8YFLogxK
U2 - 10.2514/6.2020-2258
DO - 10.2514/6.2020-2258
M3 - Conference contribution
AN - SCOPUS:85092355686
SN - 9781624105951
T3 - AIAA Scitech 2020 Forum
SP - 1
EP - 9
BT - AIAA Scitech 2020 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Scitech Forum, 2020
Y2 - 6 January 2020 through 10 January 2020
ER -