Abstract
Chromatin is the physiological template of all eukaryotic genomic activities. Histone proteins are the fundamental building elements of chromatin, which are the subject of various posttranslational modifications, including methylation. Adding and removing the methyl moieties from histones plays an important epigenetic role to ensure the release of the appropriate genetic information. Both Lys and Arg residues in histones can be dynamically methylated and demethylated by different enzymes. The processes of adding and removing methyl groups on histone Lys residues are catalyzed by histone Lys methyltransferases (HKMTs) and histone-Lys-specific demethylase (LSD), respectively. Protein Arg methyltransferases (PRMTs) add methyl groups to histone Arg residues. On the other hand, peptidy-larginine deiminases remove the methyl groups in conjunction with the amine group, leaving the citrulline aminoacid in histones. The fate of citrulline residues in histone is currently unknown. Importantly, methylation has been implicated as playing a major role in regulating gene expression to control normal cell growth, proliferation, and differentiation. The steady-state balance of histone methylation is important for the normal development and the health of an organism.
Original language | English (US) |
---|---|
Pages (from-to) | 123-153 |
Number of pages | 31 |
Journal | Enzymes |
Volume | 24 |
Issue number | C |
DOIs | |
State | Published - 2006 |
All Science Journal Classification (ASJC) codes
- Biotechnology
- Biophysics
- Biochemistry
- Molecular Biology