TY - JOUR
T1 - 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice
AU - Jeanbart, Laura
AU - Kourtis, Iraklis C.
AU - van der Vlies, André J.
AU - Swartz, Melody A.
AU - Hubbell, Jeffrey A.
N1 - Publisher Copyright:
© The Author(s) 2015.
PY - 2015/8/28
Y1 - 2015/8/28
N2 - Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress effector T cell responses and can reduce the efficacy of cancer immunotherapies. We previously showed that ultra-small polymer nanoparticles efficiently drain to the lymphatics after intradermal injection and target antigen-presenting cells, including Ly6chi Ly6g− monocytic MDSCs (Mo-MDSCs), in skin-draining lymph nodes (LNs) and spleen. Here, we developed ultra-small polymer micelles loaded with 6-thioguanine (MC-TG), a cytotoxic drug used in the treatment of myelogenous leukemia, with the aim of killing Mo-MDSCs in tumor-bearing mice and thus enhancing T cell-mediated anti-tumor responses. We found that 2Âdays post-injection in tumor-bearing mice (B16-F10 melanoma or E.G7-OVA thymoma), MC-TG depleted Mo-MDSCs in the spleen, Ly6clo Ly6g+ granulocytic MDSCs (G-MDSCs) in the draining LNs, and Gr1int Mo-MDSCs in the tumor. In both tumor models, MC-TG decreased the numbers of circulating Mo- and G-MDSCs, as well as of Ly6chi macrophages, for up to 7Âdays following a single administration. MDSC depletion was dose dependent and more effective with MC-TG than with equal doses of free TG. Finally, we tested whether this MDSC-depleting strategy might enhance cancer immunotherapies in the B16-F10Âmelanoma model. We found that MC-TG significantly improved the efficacy of adoptively transferred, OVA-specific CD8+ T cells in melanoma cells expressing OVA. These findings highlight the capacity of MC-TG in depleting MDSCs in the tumor microenvironment and show promise in promoting anti-tumor immunity when used in combination with T cell immunotherapies.
AB - Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress effector T cell responses and can reduce the efficacy of cancer immunotherapies. We previously showed that ultra-small polymer nanoparticles efficiently drain to the lymphatics after intradermal injection and target antigen-presenting cells, including Ly6chi Ly6g− monocytic MDSCs (Mo-MDSCs), in skin-draining lymph nodes (LNs) and spleen. Here, we developed ultra-small polymer micelles loaded with 6-thioguanine (MC-TG), a cytotoxic drug used in the treatment of myelogenous leukemia, with the aim of killing Mo-MDSCs in tumor-bearing mice and thus enhancing T cell-mediated anti-tumor responses. We found that 2Âdays post-injection in tumor-bearing mice (B16-F10 melanoma or E.G7-OVA thymoma), MC-TG depleted Mo-MDSCs in the spleen, Ly6clo Ly6g+ granulocytic MDSCs (G-MDSCs) in the draining LNs, and Gr1int Mo-MDSCs in the tumor. In both tumor models, MC-TG decreased the numbers of circulating Mo- and G-MDSCs, as well as of Ly6chi macrophages, for up to 7Âdays following a single administration. MDSC depletion was dose dependent and more effective with MC-TG than with equal doses of free TG. Finally, we tested whether this MDSC-depleting strategy might enhance cancer immunotherapies in the B16-F10Âmelanoma model. We found that MC-TG significantly improved the efficacy of adoptively transferred, OVA-specific CD8+ T cells in melanoma cells expressing OVA. These findings highlight the capacity of MC-TG in depleting MDSCs in the tumor microenvironment and show promise in promoting anti-tumor immunity when used in combination with T cell immunotherapies.
UR - http://www.scopus.com/inward/record.url?scp=84937970487&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84937970487&partnerID=8YFLogxK
U2 - 10.1007/s00262-015-1702-8
DO - 10.1007/s00262-015-1702-8
M3 - Article
C2 - 25982370
AN - SCOPUS:84937970487
SN - 0340-7004
VL - 64
SP - 1033
EP - 1046
JO - Cancer Immunology, Immunotherapy
JF - Cancer Immunology, Immunotherapy
IS - 8
ER -