A Backdoor Attack against 3D Point Cloud Classifiers

Zhen Xiang, David J. Miller, Siheng Chen, Xi Li, George Kesidis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

37 Scopus citations

Abstract

Vulnerability of 3D point cloud (PC) classifiers has become a grave concern due to the popularity of 3D sensors in safety-critical applications. Existing adversarial attacks against 3D PC classifiers are all test-time evasion (TTE) attacks that aim to induce test-time misclassifications using knowledge of the classifier. But since the victim classifier is usually not accessible to the attacker, the threat is largely diminished in practice, as PC TTEs typically have poor transferability. Here, we propose the first backdoor attack (BA) against PC classifiers. Originally proposed for images, BAs poison the victim classifier's training set so that the classifier learns to decide to the attacker's target class whenever the attacker's backdoor pattern is present in a given input sample. Significantly, BAs do not require knowledge of the victim classifier. Different from image BAs, we propose to insert a cluster of points into a PC as a robust backdoor pattern customized for 3D PCs. Such clusters are also consistent with a physical attack (i.e., with a captured object in a scene). We optimize the cluster's location using an independently trained surrogate classifier and choose the cluster's local geometry to evade possible PC preprocessing and PC anomaly detectors (ADs). Experimentally, our BA achieves a uniformly high success rate (≥ 87%) and shows evasiveness against state-of-the-art PC ADs. Code is available at https://github.com/zhenxianglance/PCBA.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7577-7587
Number of pages11
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/11/2110/17/21

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'A Backdoor Attack against 3D Point Cloud Classifiers'. Together they form a unique fingerprint.

Cite this