TY - JOUR
T1 - A Bayesian Approach to Estimate the Spatial Distribution of Crowdsourced Radiation Measurements around Fukushima
AU - Hultquist, Carolynne
AU - Oravecz, Zita
AU - Cervone, Guido
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/12
Y1 - 2021/12
N2 - Citizen-led movements producing spatio-temporal big data are potential sources of useful information during hazards. Yet, the sampling of crowdsourced data is often opportunistic and the statistical variations in the datasets are not typically assessed. There is a scientific need to understand the characteristics and geostatistical variability of big spatial data from these diverse sources if they are to be used for decision making. Crowdsourced radiation measurements can be visualized as raw, often overlapping, points or processed for an aggregated comparison with traditional sources to confirm patterns of elevated radiation levels. However, crowdsourced data from citizen-led projects do not typically use a spatial sampling method so classical geostatistical techniques may not seamlessly be applied. Standard aggregation and interpolation methods were adapted to represent variance, sampling patterns, and the reliability of modeled trends. Finally, a Bayesian approach was used to model the spatial distribution of crowdsourced radiation measurements around Fukushima and quantify uncertainty introduced by the spatial data characteristics. Bayesian kriging of the crowdsourced data captures hotspots and the probabilistic approach could provide timely contextualized information that can improve situational awareness during hazards. This paper calls for the development of methods and metrics to clearly communicate spatial uncertainty by evaluating data characteristics, representing observational gaps and model error, and providing probabilistic outputs for decision making.
AB - Citizen-led movements producing spatio-temporal big data are potential sources of useful information during hazards. Yet, the sampling of crowdsourced data is often opportunistic and the statistical variations in the datasets are not typically assessed. There is a scientific need to understand the characteristics and geostatistical variability of big spatial data from these diverse sources if they are to be used for decision making. Crowdsourced radiation measurements can be visualized as raw, often overlapping, points or processed for an aggregated comparison with traditional sources to confirm patterns of elevated radiation levels. However, crowdsourced data from citizen-led projects do not typically use a spatial sampling method so classical geostatistical techniques may not seamlessly be applied. Standard aggregation and interpolation methods were adapted to represent variance, sampling patterns, and the reliability of modeled trends. Finally, a Bayesian approach was used to model the spatial distribution of crowdsourced radiation measurements around Fukushima and quantify uncertainty introduced by the spatial data characteristics. Bayesian kriging of the crowdsourced data captures hotspots and the probabilistic approach could provide timely contextualized information that can improve situational awareness during hazards. This paper calls for the development of methods and metrics to clearly communicate spatial uncertainty by evaluating data characteristics, representing observational gaps and model error, and providing probabilistic outputs for decision making.
UR - http://www.scopus.com/inward/record.url?scp=85122195723&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122195723&partnerID=8YFLogxK
U2 - 10.3390/ijgi10120822
DO - 10.3390/ijgi10120822
M3 - Article
AN - SCOPUS:85122195723
SN - 2220-9964
VL - 10
JO - ISPRS International Journal of Geo-Information
JF - ISPRS International Journal of Geo-Information
IS - 12
M1 - 822
ER -