TY - JOUR
T1 - A Bayesian mixed effects support vector machine for learning and predicting daily substance use disorder patterns
AU - Baurley, James W.
AU - Claus, Eric D.
AU - Witkiewitz, Katie
AU - McMahan, Christopher S.
N1 - Publisher Copyright:
© This material is published under a contract from the NIAAA, National Institutes of Health, Department of Health and Human Services (Contract No. 75N94020C00003). The US Government retains for itself, and others acting on its behalf, a paid-up, non-exclusive, and irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
PY - 2022
Y1 - 2022
N2 - Background: Substance use disorder (SUD) is a heterogeneous disorder. Adapting machine learning algorithms to allow for the parsing of intrapersonal and interpersonal heterogeneity in meaningful ways may accelerate the discovery and implementation of clinically actionable interventions in SUD research. Objectives: Inspired by a study of heavy drinkers that collected daily drinking and substance use (ABQ DrinQ), we develop tools to estimate subject-specific risk trajectories of heavy drinking; estimate and perform inference on patient characteristics and time-varying covariates; and present results in easy-to-use Jupyter notebooks. Methods: We recast support vector machines (SVMs) into a Bayesian model extended to handle mixed effects. We then apply these methods to ABQ DrinQ to model alcohol use patterns. ABQ DrinQ consists of 190 heavy drinkers (44% female) with 109,580 daily observations. Results: We identified male gender (point estimate; 95% credible interval: −0.25;-0.29,-0.21), older age (−0.03;-0.03,-0.03), and time varying usage of nicotine (1.68;1.62,1.73), cannabis (0.05;0.03,0.07), and other drugs (1.16;1.01,1.35) as statistically significant factors of heavy drinking behavior. By adopting random effects to capture the subject-specific longitudinal trajectories, the algorithm outperforms traditional SVM (classifies 84% of heavy drinking days correctly versus 73%). Conclusions: We developed a mixed effects variant of SVM and compare it to the traditional formulation, with an eye toward elucidating the importance of incorporating random effects to account for underlying heterogeneity in SUD data. These tools and examples are packaged into a repository for researchers to explore. Understanding patterns and risk of substance use could be used for developing individualized interventions.
AB - Background: Substance use disorder (SUD) is a heterogeneous disorder. Adapting machine learning algorithms to allow for the parsing of intrapersonal and interpersonal heterogeneity in meaningful ways may accelerate the discovery and implementation of clinically actionable interventions in SUD research. Objectives: Inspired by a study of heavy drinkers that collected daily drinking and substance use (ABQ DrinQ), we develop tools to estimate subject-specific risk trajectories of heavy drinking; estimate and perform inference on patient characteristics and time-varying covariates; and present results in easy-to-use Jupyter notebooks. Methods: We recast support vector machines (SVMs) into a Bayesian model extended to handle mixed effects. We then apply these methods to ABQ DrinQ to model alcohol use patterns. ABQ DrinQ consists of 190 heavy drinkers (44% female) with 109,580 daily observations. Results: We identified male gender (point estimate; 95% credible interval: −0.25;-0.29,-0.21), older age (−0.03;-0.03,-0.03), and time varying usage of nicotine (1.68;1.62,1.73), cannabis (0.05;0.03,0.07), and other drugs (1.16;1.01,1.35) as statistically significant factors of heavy drinking behavior. By adopting random effects to capture the subject-specific longitudinal trajectories, the algorithm outperforms traditional SVM (classifies 84% of heavy drinking days correctly versus 73%). Conclusions: We developed a mixed effects variant of SVM and compare it to the traditional formulation, with an eye toward elucidating the importance of incorporating random effects to account for underlying heterogeneity in SUD data. These tools and examples are packaged into a repository for researchers to explore. Understanding patterns and risk of substance use could be used for developing individualized interventions.
UR - http://www.scopus.com/inward/record.url?scp=85125863748&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125863748&partnerID=8YFLogxK
U2 - 10.1080/00952990.2021.2024839
DO - 10.1080/00952990.2021.2024839
M3 - Article
C2 - 35196194
AN - SCOPUS:85125863748
SN - 0095-2990
VL - 48
SP - 413
EP - 421
JO - American Journal of Drug and Alcohol Abuse
JF - American Journal of Drug and Alcohol Abuse
IS - 4
ER -