A calibration study of local ice and optical sensor properties in IceCube

The IceCube Collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

The optical sensors of the IceCube Neutrino Observatory are attached on vertical strings of cables. They were frozen into the ice in the deployment holes made by hot water drill. This hole ice, to the best of our knowledge, consists of a bubbly central column, with the remainder of the re-frozen volume being optically clear. The bubbly ice often blocks one or several of the calibration LEDs in every optical sensor and significantly distorts the angular profile of the calibration light pulses. It also affects the sensors’ response to in-coming photons at different locations and directions. We present our modeling of the hole ice optical properties as well as optical sensor location and orientation within the hole ice. The shadowing effects of cable string and possible optical sensor tilt away from the nominal vertical alignment are also discussed.

Original languageEnglish (US)
Article number1029
JournalProceedings of Science
Volume395
StatePublished - Mar 18 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: Jul 12 2021Jul 23 2021

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'A calibration study of local ice and optical sensor properties in IceCube'. Together they form a unique fingerprint.

Cite this