Abstract
Frequent extinctions of local populations in metapopulations create opportunities for migrant females to establish new populations. In a metapopulation of the Glanville fritillary butterfly (Melitaea cinxia), more mobile individuals are more likely to establish new populations, especially in habitat patches that are poorly connected to existing populations. Here we show that flight metabolic rate and the frequency of a specific allele of the metabolic enzyme phosphoglucose isomerase (pgi) were both highest in newly established, isolated populations. Furthermore, genotypes with this pgi allele had elevated flight metabolic rates. These results suggest that genetic variation in pgi or a closely linked locus has a direct effect on flight metabolism, dispersal rate, and thereby on metapopulation dynamics in this species. These results also contribute to an emerging understanding of the mechanisms by which population turnover in heterogeneous landscapes may maintain genetic and phenotypic variation across populations.
Original language | English (US) |
---|---|
Pages (from-to) | 2449-2456 |
Number of pages | 8 |
Journal | Proceedings of the Royal Society B: Biological Sciences |
Volume | 272 |
Issue number | 1580 |
DOIs | |
State | Published - Dec 7 2005 |
All Science Journal Classification (ASJC) codes
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Environmental Science
- General Agricultural and Biological Sciences