TY - GEN
T1 - A Case Study Comparing Binary Classifier Characteristic Curves for Imbalanced Data
AU - Watson, Daniel
AU - Reichard, Karl
AU - Isaacson, Aaron
N1 - Publisher Copyright:
© 2023 Prognostics and Health Management Society. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Receiver operating characteristic curves are a mainstay in binary classification and have seen widespread use from their inception characterizing radar receivers in 1941. Widely used and accepted, the ROC curve is the default option for many application spaces. Building on prior work the Prognostics and Health Management community naturally adopted ROC curves to visualize classifier performance. While the ROC curve is perhaps the best known visualization of binary classifier performance it is not the only game in town. Authors from across various STEM fields have published works extolling various other metrics and visualizations in binary classifier performance evaluation. These include, but are not limited to, the precision recall characteristic curve, area under the curve metrics, bookmaker informedness and markedness. This paper will review these visualizations and metrics, provide references for more exhaustive treatments on them, and provide a case study of their use on an imbalanced prognostic health management data-set. Prognostic health management binary classification problems are often highly imbalanced with a low prevalence of positive (faulty) cases compared to negative (nominal/healthy) cases. In the presented data-set, time domain accelerometer data for a series of run-to-failure ball-on-disk scuffing tests provide a case where the vast majority of data, > 94%, is from nominally healthy data instances. A condition indicator algorithm targeting the hypothesized physical system response is validated compared to less informed classifiers. Several characteristic curves are then used to showcase the performance improvement of the physics informed condition indicator.
AB - Receiver operating characteristic curves are a mainstay in binary classification and have seen widespread use from their inception characterizing radar receivers in 1941. Widely used and accepted, the ROC curve is the default option for many application spaces. Building on prior work the Prognostics and Health Management community naturally adopted ROC curves to visualize classifier performance. While the ROC curve is perhaps the best known visualization of binary classifier performance it is not the only game in town. Authors from across various STEM fields have published works extolling various other metrics and visualizations in binary classifier performance evaluation. These include, but are not limited to, the precision recall characteristic curve, area under the curve metrics, bookmaker informedness and markedness. This paper will review these visualizations and metrics, provide references for more exhaustive treatments on them, and provide a case study of their use on an imbalanced prognostic health management data-set. Prognostic health management binary classification problems are often highly imbalanced with a low prevalence of positive (faulty) cases compared to negative (nominal/healthy) cases. In the presented data-set, time domain accelerometer data for a series of run-to-failure ball-on-disk scuffing tests provide a case where the vast majority of data, > 94%, is from nominally healthy data instances. A condition indicator algorithm targeting the hypothesized physical system response is validated compared to less informed classifiers. Several characteristic curves are then used to showcase the performance improvement of the physics informed condition indicator.
UR - http://www.scopus.com/inward/record.url?scp=85178356899&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85178356899&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85178356899
T3 - Proceedings of the Annual Conference of the Prognostics and Health Management Society, PHM
BT - Proceedings of the Annual Conference of the Prognostics and Health Management Society, PHM
A2 - Kulkarni, Chetan S.
A2 - Roychoudhury, Indranil
PB - Prognostics and Health Management Society
T2 - 15th Annual Conference of the Prognostics and Health Management Society, PHM 2023
Y2 - 28 October 2023 through 2 November 2023
ER -