A case study for the formation of stanene on a metal surface

M. Maniraj, B. Stadtmüller, D. Jungkenn, M. Düvel, S. Emmerich, W. Shi, J. Stöckl, L. Lyu, J. Kollamana, Z. Wei, A. Jurenkow, S. Jakobs, B. Yan, S. Steil, M. Cinchetti, S. Mathias, M. Aeschlimann

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

The discovery and realization of graphene as an ideal two-dimensional (2D) material has triggered extensive efforts to create similar 2D materials with exciting spin-dependent properties. Here, we report on a novel Sn 2D superstructure on Au(111) that shows similarities and differences to the expected electronic features of ideal stanene. Using spin- and angle-resolved photoemission spectroscopy, we find that a particular Sn/Au superstructure reveals a linearly dispersing band centered at the Γ ¯ -point and below the Fermi level with anti-parallel spin polarization and a Fermi velocity of vF ≈ 1×106 m/s, the same value as for graphene. We attribute the origin of the band structure to the hybridization between the Sn and the Au orbitals at the 2D Sn-Au interface. Considering that free-standing stanene simply cannot exist, our investigated structure is an important step towards the search of useful stanene-like overstructures for future technological applications.

Original languageEnglish (US)
Article number12
JournalCommunications Physics
Volume2
Issue number1
DOIs
StatePublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'A case study for the formation of stanene on a metal surface'. Together they form a unique fingerprint.

Cite this