Abstract
The discovery and realization of graphene as an ideal two-dimensional (2D) material has triggered extensive efforts to create similar 2D materials with exciting spin-dependent properties. Here, we report on a novel Sn 2D superstructure on Au(111) that shows similarities and differences to the expected electronic features of ideal stanene. Using spin- and angle-resolved photoemission spectroscopy, we find that a particular Sn/Au superstructure reveals a linearly dispersing band centered at the Γ ¯ -point and below the Fermi level with anti-parallel spin polarization and a Fermi velocity of vF ≈ 1×106 m/s, the same value as for graphene. We attribute the origin of the band structure to the hybridization between the Sn and the Au orbitals at the 2D Sn-Au interface. Considering that free-standing stanene simply cannot exist, our investigated structure is an important step towards the search of useful stanene-like overstructures for future technological applications.
Original language | English (US) |
---|---|
Article number | 12 |
Journal | Communications Physics |
Volume | 2 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2019 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy