A Cell Phone-Based Microphotometric System for Rapid Antimicrobial Susceptibility Testing

Meichei Wang Kadlec, David You, Joseph C. Liao, Pak Kin Wong

Research output: Contribution to journalArticlepeer-review

44 Scopus citations


This study demonstrates a low-cost, portable diagnostic system for rapid antimicrobial susceptibility testing in resource-limited settings. To determine the antimicrobial resistance phenotypically, the growth of pathogens in microwell arrays is detected under different antibiotic conditions. The use of a colorimetric cell viability reagent is shown to significantly improve the sensitivity of the assay compared with standard absorbance spectroscopy. Gas-permeable microwell arrays are incorporated for facilitating rapid bacterial growth and eliminating the requirement of bulky supporting equipment. Antibiotics can also be precoated in the microwell array to simplify the assay protocol toward point-of-care applications. Furthermore, a low-cost cell phone-based microphotometric system is developed for detecting the bacterial growth in the microwell array. By optimizing the operating conditions, the system allows antimicrobial susceptibility testing for samples with initial concentrations from 101 to 106 cfu/mL. Using urinary tract infection as the model system, we demonstrate rapid antimicrobial resistance profiling for uropathogens in both culture media and urine. With its simplicity and cost-effectiveness, the cell phone-based microphotometric system is anticipated to have broad applicability in resource-limited settings toward the management of infectious diseases caused by multidrug-resistant pathogens.

Original languageEnglish (US)
Pages (from-to)258-266
Number of pages9
JournalJournal of Laboratory Automation
Issue number3
StatePublished - Jun 2014

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Medical Laboratory Technology


Dive into the research topics of 'A Cell Phone-Based Microphotometric System for Rapid Antimicrobial Susceptibility Testing'. Together they form a unique fingerprint.

Cite this