A combined rarefied and continuum flow regime model for physical vapor deposition (PVD) manufacturing processes

Kevin Gott, Anil K. Kulkarni, Jogender Singh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Several modifications to physical vapor deposition (PVD) models are proposed to address the deficiencies in current theoretical studies. Simple calculations show that the flow regime of PVD fabrications will most likely vary from a continuum flow to a rarefied flow in the vacuum chamber as the vapor cloud expands toward the substrate. The flow regime for an evaporated ideal gas is calculated and then an improved equation of state is constructed and analyzed that more accurately describes vaporized metals. The result, combined with experimental observations, suggests PVD fabrication is best represented by a multi-regime flow. Then, a CFD analysis is summarized that further validates the multi-regime analysis hypothesis. Finally, a methodology for constructing and implementing the results of a theoretical multi-regime PVD model is presented.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME International Mechanical Engineering Congress and Exposition 2009, IMECE 2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages15-21
Number of pages7
EditionPART A
ISBN (Print)9780791843826
DOIs
StatePublished - 2010
EventASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009 - Lake Buena Vista, FL, United States
Duration: Nov 13 2009Nov 19 2009

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
NumberPART A
Volume9

Conference

ConferenceASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009
Country/TerritoryUnited States
CityLake Buena Vista, FL
Period11/13/0911/19/09

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A combined rarefied and continuum flow regime model for physical vapor deposition (PVD) manufacturing processes'. Together they form a unique fingerprint.

Cite this