TY - JOUR
T1 - A community effort to create standards for evaluating tumor subclonal reconstruction
AU - DREAM SMC-Het Participants
AU - Salcedo, Adriana
AU - Tarabichi, Maxime
AU - Espiritu, Shadrielle Melijah G.
AU - Deshwar, Amit G.
AU - David, Matei
AU - Wilson, Nathan M.
AU - Dentro, Stefan
AU - Wintersinger, Jeff A.
AU - Liu, Lydia Y.
AU - Ko, Minjeong
AU - Sivanandan, Srinivasan
AU - Zhang, Hongjiu
AU - Zhu, Kaiyi
AU - Ou Yang, Tai Hsien
AU - Chilton, John M.
AU - Buchanan, Alex
AU - Lalansingh, Christopher M.
AU - P’ng, Christine
AU - Anghel, Catalina V.
AU - Umar, Imaad
AU - Lo, Bryan
AU - Zou, William
AU - Jha, Alokkumar
AU - Huang, Tanxiao
AU - Yang, Tsun Po
AU - Peifer, Martin
AU - Sahinalp, Cenk
AU - Malikic, Salem
AU - Vázquez-García, Ignacio
AU - Mustonen, Ville
AU - Yang, Hsih Te
AU - Lee, Ken Ray
AU - Ji, Yuan
AU - Sengupta, Subhajit
AU - Rudewicz, Justine
AU - Nikolski, Macha
AU - Schaeverbeke, Quentin
AU - Yuan, Ke
AU - Markowetz, Florian
AU - Macintyre, Geoff
AU - Cmero, Marek
AU - Chaudhary, Belal
AU - Leshchiner, Ignaty
AU - Livitz, Dimitri
AU - Getz, Gad
AU - Loher, Phillipe
AU - Yu, Kaixian
AU - Wang, Wenyi
AU - Zhu, Hongtu
AU - Simpson, Jared T.
N1 - Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Tumor DNA sequencing data can be interpreted by computational methods that analyze genomic heterogeneity to infer evolutionary dynamics. A growing number of studies have used these approaches to link cancer evolution with clinical progression and response to therapy. Although the inference of tumor phylogenies is rapidly becoming standard practice in cancer genome analyses, standards for evaluating them are lacking. To address this need, we systematically assess methods for reconstructing tumor subclonality. First, we elucidate the main algorithmic problems in subclonal reconstruction and develop quantitative metrics for evaluating them. Then we simulate realistic tumor genomes that harbor all known clonal and subclonal mutation types and processes. Finally, we benchmark 580 tumor reconstructions, varying tumor read depth, tumor type and somatic variant detection. Our analysis provides a baseline for the establishment of gold-standard methods to analyze tumor heterogeneity.
AB - Tumor DNA sequencing data can be interpreted by computational methods that analyze genomic heterogeneity to infer evolutionary dynamics. A growing number of studies have used these approaches to link cancer evolution with clinical progression and response to therapy. Although the inference of tumor phylogenies is rapidly becoming standard practice in cancer genome analyses, standards for evaluating them are lacking. To address this need, we systematically assess methods for reconstructing tumor subclonality. First, we elucidate the main algorithmic problems in subclonal reconstruction and develop quantitative metrics for evaluating them. Then we simulate realistic tumor genomes that harbor all known clonal and subclonal mutation types and processes. Finally, we benchmark 580 tumor reconstructions, varying tumor read depth, tumor type and somatic variant detection. Our analysis provides a baseline for the establishment of gold-standard methods to analyze tumor heterogeneity.
UR - http://www.scopus.com/inward/record.url?scp=85077732092&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077732092&partnerID=8YFLogxK
U2 - 10.1038/s41587-019-0364-z
DO - 10.1038/s41587-019-0364-z
M3 - Article
C2 - 31919445
AN - SCOPUS:85077732092
SN - 1087-0156
VL - 38
SP - 97
EP - 107
JO - Nature Biotechnology
JF - Nature Biotechnology
IS - 1
ER -