A Continual Pre-training Approach to Tele-Triaging Pregnant Women in Kenya

Wenbo Zhang, Hangzhi Guo, Prerna Ranganathan, Jay Patel, Sathyanath Rajasekharan, Nidhi Danayak, Manan Gupta, Amulya Yadav

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Access to high-quality maternal health care services is limited in Kenya, which resulted in ∼36,000 maternal and neonatal deaths in 2018. To tackle this challenge, Jacaranda Health (a non-profit organization working on maternal health in Kenya) developed PROMPTS, an SMS based tele-triage system for pregnant and puerperal women, which has more than 350,000 active users in Kenya. PROMPTS empowers pregnant women living far away from doctors and hospitals to send SMS messages to get quick answers (through human helpdesk agents) to questions about their medical symptoms and pregnancy status. Unfortunately, ∼1.1 million SMS messages are received by PROMPTS every month, which makes it challenging for helpdesk agents to ensure that these messages can be interpreted correctly and evaluated by their level of emergency to ensure timely responses and/or treatments for women in need. This paper reports on a collaborative effort with Jacaranda Health to develop a state-of-the-art natural language processing (NLP) framework, TRIM-AI (TRIage for Mothers using AI), which can automatically predict the emergency level (or severity of medical condition) of a pregnant mother based on the content of their SMS messages. TRIM-AI leverages recent advances in multi-lingual pre-training and continual pre-training to tackle code-mixed SMS messages (between English and Swahili), and achieves a weighted F1 score of 0.774 on real-world datasets. TRIM-AI has been successfully deployed in the field since June 2022, and is being used by Jacaranda Health to prioritize the provision of services and care to pregnant women with the most critical medical conditions. Our preliminary A/B tests in the field show that TRIM-AI is ∼17% more accurate at predicting high-risk medical conditions from SMS messages sent by pregnant Kenyan mothers, which reduces the helpdesk’s workload by ∼12%.

Original languageEnglish (US)
Title of host publicationAAAI-23 Special Tracks
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Pages14620-14627
Number of pages8
ISBN (Electronic)9781577358800
StatePublished - Jun 27 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: Feb 7 2023Feb 14 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period2/7/232/14/23

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Cite this