TY - GEN
T1 - A Continual Pre-training Approach to Tele-Triaging Pregnant Women in Kenya
AU - Zhang, Wenbo
AU - Guo, Hangzhi
AU - Ranganathan, Prerna
AU - Patel, Jay
AU - Rajasekharan, Sathyanath
AU - Danayak, Nidhi
AU - Gupta, Manan
AU - Yadav, Amulya
N1 - Funding Information:
Wenbo Zhang, Hangzhi Guo, Jay Patel, Sathyanath Ra-jasekharan, and Amulya Yadav were graciously supported by a Google Research AI for Social Good grant.
Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - Access to high-quality maternal health care services is limited in Kenya, which resulted in ∼36,000 maternal and neonatal deaths in 2018. To tackle this challenge, Jacaranda Health (a non-profit organization working on maternal health in Kenya) developed PROMPTS, an SMS based tele-triage system for pregnant and puerperal women, which has more than 350,000 active users in Kenya. PROMPTS empowers pregnant women living far away from doctors and hospitals to send SMS messages to get quick answers (through human helpdesk agents) to questions about their medical symptoms and pregnancy status. Unfortunately, ∼1.1 million SMS messages are received by PROMPTS every month, which makes it challenging for helpdesk agents to ensure that these messages can be interpreted correctly and evaluated by their level of emergency to ensure timely responses and/or treatments for women in need. This paper reports on a collaborative effort with Jacaranda Health to develop a state-of-the-art natural language processing (NLP) framework, TRIM-AI (TRIage for Mothers using AI), which can automatically predict the emergency level (or severity of medical condition) of a pregnant mother based on the content of their SMS messages. TRIM-AI leverages recent advances in multi-lingual pre-training and continual pre-training to tackle code-mixed SMS messages (between English and Swahili), and achieves a weighted F1 score of 0.774 on real-world datasets. TRIM-AI has been successfully deployed in the field since June 2022, and is being used by Jacaranda Health to prioritize the provision of services and care to pregnant women with the most critical medical conditions. Our preliminary A/B tests in the field show that TRIM-AI is ∼17% more accurate at predicting high-risk medical conditions from SMS messages sent by pregnant Kenyan mothers, which reduces the helpdesk’s workload by ∼12%.
AB - Access to high-quality maternal health care services is limited in Kenya, which resulted in ∼36,000 maternal and neonatal deaths in 2018. To tackle this challenge, Jacaranda Health (a non-profit organization working on maternal health in Kenya) developed PROMPTS, an SMS based tele-triage system for pregnant and puerperal women, which has more than 350,000 active users in Kenya. PROMPTS empowers pregnant women living far away from doctors and hospitals to send SMS messages to get quick answers (through human helpdesk agents) to questions about their medical symptoms and pregnancy status. Unfortunately, ∼1.1 million SMS messages are received by PROMPTS every month, which makes it challenging for helpdesk agents to ensure that these messages can be interpreted correctly and evaluated by their level of emergency to ensure timely responses and/or treatments for women in need. This paper reports on a collaborative effort with Jacaranda Health to develop a state-of-the-art natural language processing (NLP) framework, TRIM-AI (TRIage for Mothers using AI), which can automatically predict the emergency level (or severity of medical condition) of a pregnant mother based on the content of their SMS messages. TRIM-AI leverages recent advances in multi-lingual pre-training and continual pre-training to tackle code-mixed SMS messages (between English and Swahili), and achieves a weighted F1 score of 0.774 on real-world datasets. TRIM-AI has been successfully deployed in the field since June 2022, and is being used by Jacaranda Health to prioritize the provision of services and care to pregnant women with the most critical medical conditions. Our preliminary A/B tests in the field show that TRIM-AI is ∼17% more accurate at predicting high-risk medical conditions from SMS messages sent by pregnant Kenyan mothers, which reduces the helpdesk’s workload by ∼12%.
UR - http://www.scopus.com/inward/record.url?scp=85168011311&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85168011311&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85168011311
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 14620
EP - 14627
BT - AAAI-23 Special Tracks
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI press
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -