TY - JOUR
T1 - A critical re-evaluation of the specificity of action of perivagal capsaicin
AU - Browning, K. N.
AU - Babic, T.
AU - Holmes, G. M.
AU - Swartz, E.
AU - Travagli, R. A.
PY - 2013/3
Y1 - 2013/3
N2 - Perivagal application of capsaicin (1% solution) is considered to cause a selective degeneration of vagal afferent C fibres and has been used extensively to examine the site of action of many gastrointestinal (GI) neuropeptides. The actions of both capsaicin and GI neuropeptides may not be restricted to vagal afferent fibres, however, as other non-sensory neurones have displayed sensitivity to capsaicin and brainstem microinjections of these neuropeptides induce GI effects similar to those obtained upon systemic application. The aim of the present study was to test the hypothesis that perivagal capsaicin induces degeneration of vagal efferents controlling GI functions. Experiments were conducted 7-14 days after 30 min unilateral perivagal application of 0.1-1% capsaicin. Immunohistochemical analyses demonstrated that, as following vagotomy, capsaicin induced dendritic degeneration, decreased choline acetyltransferase but increased nitric oxide synthase immunoreactivity in rat dorsal motor nucleus of the vagus (DMV) neurones. Electrophysiological recordings showed a decreased DMV input resistance and excitability due, in part, to the expression of a large conductance calcium-dependent potassium current and the opening of a transient outward potassium window current at resting potential. Furthermore, the number of DMV neurones excited by thyrotrophin-releasing hormone and the gastric motility response to DMV microinjections of TRH were decreased significantly. Our data indicate that perivagal application of capsaicin induced DMV neuronal degeneration and decreased vagal motor responses. Treatment with perivagal capsaicin cannot therefore be considered selective for vagal afferent C fibres and, consequently, care is needed when using perivagal capsaicin to assess the mechanism of action of GI neuropeptides.
AB - Perivagal application of capsaicin (1% solution) is considered to cause a selective degeneration of vagal afferent C fibres and has been used extensively to examine the site of action of many gastrointestinal (GI) neuropeptides. The actions of both capsaicin and GI neuropeptides may not be restricted to vagal afferent fibres, however, as other non-sensory neurones have displayed sensitivity to capsaicin and brainstem microinjections of these neuropeptides induce GI effects similar to those obtained upon systemic application. The aim of the present study was to test the hypothesis that perivagal capsaicin induces degeneration of vagal efferents controlling GI functions. Experiments were conducted 7-14 days after 30 min unilateral perivagal application of 0.1-1% capsaicin. Immunohistochemical analyses demonstrated that, as following vagotomy, capsaicin induced dendritic degeneration, decreased choline acetyltransferase but increased nitric oxide synthase immunoreactivity in rat dorsal motor nucleus of the vagus (DMV) neurones. Electrophysiological recordings showed a decreased DMV input resistance and excitability due, in part, to the expression of a large conductance calcium-dependent potassium current and the opening of a transient outward potassium window current at resting potential. Furthermore, the number of DMV neurones excited by thyrotrophin-releasing hormone and the gastric motility response to DMV microinjections of TRH were decreased significantly. Our data indicate that perivagal application of capsaicin induced DMV neuronal degeneration and decreased vagal motor responses. Treatment with perivagal capsaicin cannot therefore be considered selective for vagal afferent C fibres and, consequently, care is needed when using perivagal capsaicin to assess the mechanism of action of GI neuropeptides.
UR - http://www.scopus.com/inward/record.url?scp=84875083258&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875083258&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2012.246827
DO - 10.1113/jphysiol.2012.246827
M3 - Article
C2 - 23297311
AN - SCOPUS:84875083258
SN - 0022-3751
VL - 591
SP - 1563
EP - 1580
JO - Journal of Physiology
JF - Journal of Physiology
IS - 6
ER -