A deployable multi-tine endoscopic radiofrequency ablation electrode: Simulation validation in a thermochromic tissue phantom

Bradley Hanks, Fariha Azhar, Mary Frecker, Ryan Clement, Jenna Greaser, Kevin Snook

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Endoscopic radiofrequency ablation has gained interest for treating abdominal tumors. The radiofrequency ablation electrode geometry largely determines the size and shape of the ablation zone. Mismatch between the ablation zone and tumor shapes leads to reoccurrence of the cancer. Recently, work has been published regarding a novel deployable multi-tine electrode for endoscopic radiofrequency ablation. The prior work developed a thermal ablation model to predict the ablation zone surrounding an electrode and a systematic optimization of the electrode shape to treat a specific tumor shape. The purpose of this work is to validate the thermal ablation model through experiments in a tissue phantom that changes color at ablation temperatures. The experiments highlight the importance of thermal tissue damage in finite element modeling. Thermal induced changes in tissue properties, if not accounted for in finite element modeling, can lead to significant overprediction of the expected ablation zone surrounding an electrode.

Original languageEnglish (US)
Title of host publicationFrontiers in Biomedical Devices, BIOMED - 2019 Design of Medical Devices Conference, DMD 2019
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791841037
DOIs
StatePublished - Jan 1 2019
Event2019 Design of Medical Devices Conference, DMD 2019 - Minneapolis, United States
Duration: Apr 15 2019Apr 18 2019

Publication series

NameFrontiers in Biomedical Devices, BIOMED - 2019 Design of Medical Devices Conference, DMD 2019

Conference

Conference2019 Design of Medical Devices Conference, DMD 2019
Country/TerritoryUnited States
CityMinneapolis
Period4/15/194/18/19

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'A deployable multi-tine endoscopic radiofrequency ablation electrode: Simulation validation in a thermochromic tissue phantom'. Together they form a unique fingerprint.

Cite this