A ferric-chelate reductase for iron uptake from soils

Nigel J. Robinson, Catherine M. Procter, Erin L. Connolly, Mary Lou Guerinot

Research output: Contribution to journalArticlepeer-review

1047 Scopus citations

Abstract

Iron deficiency afflicts more than three billion people worldwide1, and plants are the principal source of iron in most diets. Low availability of iron often limits plant growth because iron forms insoluble ferric oxides, leaving only a small, organically complexed fraction in soil solutions2. The enzyme ferric-chelate reductase is required for most plants to acquire soluble iron. Here we report the isolation of the FRO2 gene, which is expressed in iron-deficient roots of Arabidopsis. FRO2 belongs to a superfamily of flavocytochromes that transport electrons across membranes. It possesses intramembranous binding sites for haem and cytoplasmic binding sites for nucleotide cofactors that donate and transfer electrons. We show that FRO2 is allelic to the frd1 mutations that impair the activity of ferric-chelate reductase3. There is a nonsense mutation within the first exon of FRO2 in frd1-1 and a missense mutation within FRO2 infrd1-3. Introduction of functional FRO2 complements the frd1-1 phenotype in transgenic plants. The isolation of FRO2 has implications for the generation of crops with improved nutritional quality and increased growth in iron- deficient soils.

Original languageEnglish (US)
Pages (from-to)694-697
Number of pages4
JournalNature
Volume397
Issue number6721
DOIs
StatePublished - Feb 25 1999

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'A ferric-chelate reductase for iron uptake from soils'. Together they form a unique fingerprint.

Cite this