TY - GEN
T1 - A figure-of-merit for design of high performance inductive power transmission links for implantable microelectronic devices
AU - Kiani, Mehdi
AU - Ghovanloo, Maysam
PY - 2012
Y1 - 2012
N2 - Wireless power transfer through inductive coupling is used in many applications such as high performance implantable microelectronic devices (IMDs). Power transfer efficiency (PTE) and power delivered to the load (PDL) are two conventional inductive link design merits that determine the energy source and driver specifications, heat dissipation, power transmission range, and risk of interference with other devices. Unfortunately designing the inductive link to achieve a high PTE will drastically reduce the PDL and vice versa. Therefore, we are proposing a new figure-of-merit (FoM), which includes both PTE and PDL with proper weights, to help designers of inductive power transfer links to strike a balance between high PTE and PDL at the same time. Three design examples based on the PTE, PDL, and the new FoM have been presented for IMDs to demonstrate the usage and efficacy of the FoM. Our measurement results show that the inductive link optimized based on the FoM can achieved 1.65 times higher PTE than the one optimized for the PDL (72.5% vs. 44%) and at the same time provide 20.8 times larger PDL compared to the one optimized for the PTE (177 mW vs. 8.5 mW for 1 V driving voltage). The inductive links optimized for the PTE and PDL provide 24% higher PTE and PDL compared to the one optimized based on the FoM, respectively.
AB - Wireless power transfer through inductive coupling is used in many applications such as high performance implantable microelectronic devices (IMDs). Power transfer efficiency (PTE) and power delivered to the load (PDL) are two conventional inductive link design merits that determine the energy source and driver specifications, heat dissipation, power transmission range, and risk of interference with other devices. Unfortunately designing the inductive link to achieve a high PTE will drastically reduce the PDL and vice versa. Therefore, we are proposing a new figure-of-merit (FoM), which includes both PTE and PDL with proper weights, to help designers of inductive power transfer links to strike a balance between high PTE and PDL at the same time. Three design examples based on the PTE, PDL, and the new FoM have been presented for IMDs to demonstrate the usage and efficacy of the FoM. Our measurement results show that the inductive link optimized based on the FoM can achieved 1.65 times higher PTE than the one optimized for the PDL (72.5% vs. 44%) and at the same time provide 20.8 times larger PDL compared to the one optimized for the PTE (177 mW vs. 8.5 mW for 1 V driving voltage). The inductive links optimized for the PTE and PDL provide 24% higher PTE and PDL compared to the one optimized based on the FoM, respectively.
UR - http://www.scopus.com/inward/record.url?scp=84881049538&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881049538&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2012.6346064
DO - 10.1109/EMBC.2012.6346064
M3 - Conference contribution
C2 - 23366025
AN - SCOPUS:84881049538
SN - 9781424441198
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 847
EP - 850
BT - 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
T2 - 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
Y2 - 28 August 2012 through 1 September 2012
ER -