Abstract
A finite element for planar beams with active constrained layer (ACL) damping treatments is presented. Features of this non-shear locking element include a time-domain viacoelastic material model, and the ability to readily accommodate segmented (i.e. non-continuous) constraining layers. These features are potentially important in active control applications: the frequency-dependent stiffness and damping of the viscoelastic material directly affects ayatem modal frequencies and damping; the high local damping of the viscoelastic layer can result in complex vibration modes and differences in the relative phase of vibration between points; and segmentation, an effective means of increasing passive damping in long- wavelength vibration modes, affords multiple control inputs and improved parformance in an active constrained layer application. The anelastic displacement fields (ADF) method is used to implement the viscoelastic material model, enabling the straightforward development of time-domain finite elements. The performance of the finite element is verified through several sample modal analyses, including proportional-derivative control based on discrete strain sensing. Because of phasing associated with mode shapes, control using a single continuous ACL can be desabilizing. A segmented ACL is more robust than the continuous treatment, in that the damping of modes at least up to the number of independent patches is increased by control action.
Original language | English (US) |
---|---|
Pages (from-to) | 615-627 |
Number of pages | 13 |
Journal | Smart Materials and Structures |
Volume | 5 |
Issue number | 5 |
DOIs | |
State | Published - Oct 1996 |
All Science Journal Classification (ASJC) codes
- Signal Processing
- Civil and Structural Engineering
- Atomic and Molecular Physics, and Optics
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering