A game theoretic treatment for pair-wise secret-key generation in many-to-one networks

Remi A. Chou, Aylin Yener

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    3 Scopus citations

    Abstract

    We consider secret-key generation between several agents and a base station that observe independent and identically distributed (i.i.d.) realizations of correlated random variables. Each agent wishes to generate the longest possible individual key with the base station by means of public communication. All keys must be jointly kept secret from all external entities. We do not require them to be kept secret among the agents. In this many-to-one secret-key generation setting, it can be shown that the agents can take advantage of a collective protocol to increase the sum-rate of all the generated keys. However, when each agent is only interested in maximizing its own secret-key rate, agents may be unwilling to participate in a collective protocol. Furthermore, when such a collective protocol is employed, how to fairly allocate individual key rates arises as a valid issue. We study this tension between cooperation and self-interest with a game-theoretic treatment. We establish that cooperation is in the best interest of all agents and that there exists individual secret-key rate allocations that incentivize the agents to follow the protocol. Additionally, we propose an explicit and low-complexity coding scheme based on polar codes and hash functions that achieves such allocations.

    Original languageEnglish (US)
    Title of host publication2017 IEEE International Symposium on Information Theory, ISIT 2017
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages1524-1528
    Number of pages5
    ISBN (Electronic)9781509040964
    DOIs
    StatePublished - Aug 9 2017
    Event2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany
    Duration: Jun 25 2017Jun 30 2017

    Publication series

    NameIEEE International Symposium on Information Theory - Proceedings
    ISSN (Print)2157-8095

    Other

    Other2017 IEEE International Symposium on Information Theory, ISIT 2017
    Country/TerritoryGermany
    CityAachen
    Period6/25/176/30/17

    All Science Journal Classification (ASJC) codes

    • Theoretical Computer Science
    • Information Systems
    • Modeling and Simulation
    • Applied Mathematics

    Fingerprint

    Dive into the research topics of 'A game theoretic treatment for pair-wise secret-key generation in many-to-one networks'. Together they form a unique fingerprint.

    Cite this