A genome-wide association study reveals molecular mechanism underlying powdery mildew resistance in cucumber

Xuewen Xu, Yujiao Du, Suhao Li, Ming Tan, Hamza Sohail, Xueli Liu, Xiaohua Qi, Xiaodong Yang, Xuehao Chen

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: Powdery mildew is a disease with one of the most substantial impacts on cucumber production globally. The most efficient approach for controlling powdery mildew is the development of genetic resistance; however, few genes associated with inherent variations in cucumber powdery mildew resistance have been identified as of yet. Results: In this study, we re-sequence 299 cucumber accessions, which are divided into four geographical groups. A genome-wide association study identifies 50 sites significantly associated with natural variations in powdery mildew resistance. Linkage disequilibrium analysis further divides these 50 sites into 32 linkage disequilibrium blocks containing 41 putative genes. Virus-induced gene silencing and gene expression analysis implicate CsGy5G015960, which encodes a phosphate transporter, as the candidate gene regulating powdery mildew resistance. On the basis of the resequencing data, we generate five CsGy5G015960 haplotypes, identifying Hap.1 as the haplotype most likely associated with powdery mildew resistance. In addition, we determine that a 29-bp InDel in the 3′ untranslated region of CsGy5G015960 is responsible for mRNA stability. Overexpression of CsGy5G015960Hap.1 in the susceptible line enhances powdery mildew resistance and phosphorus accumulation. Further comparative RNA-seq analysis demonstrates that CsGy5G015960Hap.1 may regulate cucumber powdery mildew resistance by maintaining a higher H2O2 level through the depletion of multiple class III peroxidases. Conclusions: Here we identify a candidate powdery mildew-resistant gene in cucumber using GWAS. The identified gene may be a promising target for molecular breeding and genetic engineering in cucumber to enhance powdery mildew resistance.

Original languageEnglish (US)
Article number252
JournalGenome biology
Volume25
Issue number1
DOIs
StatePublished - Dec 2024

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Cell Biology

Fingerprint

Dive into the research topics of 'A genome-wide association study reveals molecular mechanism underlying powdery mildew resistance in cucumber'. Together they form a unique fingerprint.

Cite this