TY - JOUR
T1 - A genome-wide screen for β-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression
AU - Yochum, Gregory S.
AU - Cleland, Ryan
AU - Goodman, Richard H.
PY - 2008/12
Y1 - 2008/12
N2 - Mutations in components of the Wnt signaling pathway initiate colorectal carcinogenesis by deregulating the β-catenin transcriptional coactivator. β-Catenin activation of one target in particular, the c-Myc protooncogene, is required for colon cancer pathogenesis. β-Catenin is known to regulate c-Myc expression via sequences upstream of the transcription start site. Here, we report that a more robust β-catenin binding region localizes 1.4 kb downstream from the c-Myc transcriptional stop site. This site was discovered using a genome-wide method for identifying transcription factor binding sites termed serial analysis of chromatin occupancy. Chromatin immunoprecipitation- scanning assays demonstrate that the 5′ enhancer and the 3′ binding element are the only β-catenin and TCF4 binding regions across the c-Myc locus. When placed downstream of a simian virus 40-driven promoter-luciferase construct, the 3′ element activated luciferase transcription when introduced into HCT116 cells. c-Myc transcription is negligible in quiescent HCT116 cells but is induced when cells reenter the cell cycle after the addition of mitogens. Using these cells, we found that β-catenin and TCF4 occupancy at the 3′ enhancer precede occupancy at the 5′ enhancer. Association of c-Jun, β-catenin, and TCF4 specifically with the downstream enhancer underlies mitogen stimulation of c-Myc transcription. Our findings indicate that a downstream enhancer element provides the principal regulation of c-Myc expression.
AB - Mutations in components of the Wnt signaling pathway initiate colorectal carcinogenesis by deregulating the β-catenin transcriptional coactivator. β-Catenin activation of one target in particular, the c-Myc protooncogene, is required for colon cancer pathogenesis. β-Catenin is known to regulate c-Myc expression via sequences upstream of the transcription start site. Here, we report that a more robust β-catenin binding region localizes 1.4 kb downstream from the c-Myc transcriptional stop site. This site was discovered using a genome-wide method for identifying transcription factor binding sites termed serial analysis of chromatin occupancy. Chromatin immunoprecipitation- scanning assays demonstrate that the 5′ enhancer and the 3′ binding element are the only β-catenin and TCF4 binding regions across the c-Myc locus. When placed downstream of a simian virus 40-driven promoter-luciferase construct, the 3′ element activated luciferase transcription when introduced into HCT116 cells. c-Myc transcription is negligible in quiescent HCT116 cells but is induced when cells reenter the cell cycle after the addition of mitogens. Using these cells, we found that β-catenin and TCF4 occupancy at the 3′ enhancer precede occupancy at the 5′ enhancer. Association of c-Jun, β-catenin, and TCF4 specifically with the downstream enhancer underlies mitogen stimulation of c-Myc transcription. Our findings indicate that a downstream enhancer element provides the principal regulation of c-Myc expression.
UR - http://www.scopus.com/inward/record.url?scp=57349146621&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57349146621&partnerID=8YFLogxK
U2 - 10.1128/MCB.00744-08
DO - 10.1128/MCB.00744-08
M3 - Article
C2 - 18852287
AN - SCOPUS:57349146621
SN - 0270-7306
VL - 28
SP - 7368
EP - 7379
JO - Molecular and cellular biology
JF - Molecular and cellular biology
IS - 24
ER -