A gracefully degrading and energy-efficient modular router architecture for on-chip networks

Jongman Kim, Chrysostomos Nicopoulos, Dongkook Park, Vijaykrishnan Narayanan, Mazin S. Yousif, Chita R. Das

Research output: Chapter in Book/Report/Conference proceedingConference contribution

166 Scopus citations

Abstract

Packet-based on-chip networks are increasingly being adopted in complex System-on-Chip (SoC) designs supporting numerous homogeneous and heterogeneous functional blocks. These Network-on-Chip (NoC) architectures are required to not only provide ultra-low latency, but also occupy a small footprint and consume as little energy as possible. Further, reliability is rapidly becoming a major challenge in deep sub-micron technologies due to the increased prominence of permanent faults resulting from accelerated aging effects and manufacturing/testing challenges. Towards the goal of designing low-latency, energy-efficient and reliable on-chip communication networks, we propose a novel fine-grained modular router architecture. The proposed architecture employs decoupled parallel arbiters and uses smaller crossbars for row and column connections to reduce output port contention probabilities as compared to existing designs. Furthermore, the router employs a new switch allocation technique known as "Mirroring Effect" to reduce arbitration depth and increase concurrency. In addition, the modular design permits graceful degradation of the network in the event of permanent faults and also helps to reduce the dynamic power consumption. Our simulation results indicate that in an 8 × 8 mesh network, the proposed architecture reduces packet latency by 4-40% and power consumption by 6-20% as compared to two existing router architectures. Evaluation using a combined performance, energy and fault-tolerance metric indicates that the proposed architecture provides 35-50% overall improvement compared to the two earlier routers.

Original languageEnglish (US)
Title of host publicationProceedings - 33rd International Symposium on Computer Architecture,ISCA 2006
Pages4-15
Number of pages12
DOIs
StatePublished - 2006
Event33rd International Symposium on Computer Architecture, ISCA 2006 - Boston, MA, United States
Duration: Jun 17 2006Jun 21 2006

Publication series

NameProceedings - International Symposium on Computer Architecture
Volume2006
ISSN (Print)1063-6897

Other

Other33rd International Symposium on Computer Architecture, ISCA 2006
Country/TerritoryUnited States
CityBoston, MA
Period6/17/066/21/06

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'A gracefully degrading and energy-efficient modular router architecture for on-chip networks'. Together they form a unique fingerprint.

Cite this