A graph discretization of the Laplace-Beltrami operator

Dmitri Burago, Sergei Ivanov, Yaroslav Kurylev

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

We show that eigenvalues and eigenfunctions of the Laplace-Beltrami operator on a Riemannian manifold are approximated by eigenvalues and eigenvectors of a (suitably weighted) graph Laplace operator of a proximity graph on an epsilon-net.

Original languageEnglish (US)
Pages (from-to)675-714
Number of pages40
JournalJournal of Spectral Theory
Volume4
Issue number4
DOIs
StatePublished - 2014

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Geometry and Topology

Fingerprint

Dive into the research topics of 'A graph discretization of the Laplace-Beltrami operator'. Together they form a unique fingerprint.

Cite this