TY - GEN
T1 - A hierarchical image clustering cosegmentation framework
AU - Kim, Edward
AU - Li, Hongsheng
AU - Huang, Xiaolei
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - Given the knowledge that the same or similar objects appear in a set of images, our goal is to simultaneously segment that object from the set of images. To solve this problem, known as the cosegmentation problem, we present a method based upon hierarchical clustering. Our framework first eliminates intra-class heterogeneity in a dataset by clustering similar images together into smaller groups. Then, from each image, our method extracts multiple levels of segmentation and creates connections between regions (e.g. superpixel) across levels to establish intra-image multi-scale constraints. Next we take advantage of the information available from other images in our group. We design and present an efficient method to create inter-image relationships, e.g. connections between image regions from one image to all other images in an image cluster. Given the intra & inter-image connections, we perform a segmentation of the group of images into foreground and background regions. Finally, we compare our segmentation accuracy to several other state-of-the-art segmentation methods on standard datasets, and also demonstrate the robustness of our method on real world data.
AB - Given the knowledge that the same or similar objects appear in a set of images, our goal is to simultaneously segment that object from the set of images. To solve this problem, known as the cosegmentation problem, we present a method based upon hierarchical clustering. Our framework first eliminates intra-class heterogeneity in a dataset by clustering similar images together into smaller groups. Then, from each image, our method extracts multiple levels of segmentation and creates connections between regions (e.g. superpixel) across levels to establish intra-image multi-scale constraints. Next we take advantage of the information available from other images in our group. We design and present an efficient method to create inter-image relationships, e.g. connections between image regions from one image to all other images in an image cluster. Given the intra & inter-image connections, we perform a segmentation of the group of images into foreground and background regions. Finally, we compare our segmentation accuracy to several other state-of-the-art segmentation methods on standard datasets, and also demonstrate the robustness of our method on real world data.
UR - http://www.scopus.com/inward/record.url?scp=84866639223&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866639223&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2012.6247737
DO - 10.1109/CVPR.2012.6247737
M3 - Conference contribution
AN - SCOPUS:84866639223
SN - 9781467312264
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 686
EP - 693
BT - 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012
T2 - 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012
Y2 - 16 June 2012 through 21 June 2012
ER -