TY - JOUR
T1 - A histone fold TAF octamer within the yeast TFIID transcriptional coactivator
AU - Selleck, William
AU - Howley, Ryan
AU - Fang, Qiaojun
AU - Podolny, Vladimir
AU - Fried, Michael G.
AU - Buratowski, Stephen
AU - Tan, Song
N1 - Funding Information:
We thank B. Schlansky and M. Song for technical assistance; C. Brown, J. Reese, B. Simpson and J. Workman for critical reading of the manuscript, and to the gene regulation community at Penn State for stimulating discussions. We are also grateful to T. Richmond, in whose laboratory preliminary studies for this project were initiated. This work was supported by NIH grants to M.F., S.B. and S.T. S.B. is a Leukemia and Lymphoma Society Scholar.
PY - 2001
Y1 - 2001
N2 - Gene activity in a eukaryotic cell is regulated by accessory factors to RNA polymerase II, which include the general transcription factor complex TFIID, composed of TBP and TBP-associated factors (TAFs). Three TAFs that contain histone fold motifs (yTAF17, yTAF60 and yTAF61) are critical for transcriptional regulation in the yeast Saccharomyces cerevisiae and are found in both TFIID and SAGA, a multicomponent histone acetyltransferase transcriptional coactivator. Although these three TAFs were proposed to assemble into a pseudooctamer complex, we find instead that yTAF17, yTAF60 and yTAF61 form a specific TAF octamer complex with a fourth TAF found in TFIID, yTAF48. We have reconstituted this complex in vitro and established that it is an octamer containing two copies each of the four components. Point mutations within the histone folds disrupt the octamer in vitro, and temperature-sensitive mutations in the histone folds can be specifically suppressed by overexpressing the other TAF octamer components in vivo. Our results indicate that the TAF octamer is similar both in stoichiometry and histone fold interactions to the histone octamer component of chromatin.
AB - Gene activity in a eukaryotic cell is regulated by accessory factors to RNA polymerase II, which include the general transcription factor complex TFIID, composed of TBP and TBP-associated factors (TAFs). Three TAFs that contain histone fold motifs (yTAF17, yTAF60 and yTAF61) are critical for transcriptional regulation in the yeast Saccharomyces cerevisiae and are found in both TFIID and SAGA, a multicomponent histone acetyltransferase transcriptional coactivator. Although these three TAFs were proposed to assemble into a pseudooctamer complex, we find instead that yTAF17, yTAF60 and yTAF61 form a specific TAF octamer complex with a fourth TAF found in TFIID, yTAF48. We have reconstituted this complex in vitro and established that it is an octamer containing two copies each of the four components. Point mutations within the histone folds disrupt the octamer in vitro, and temperature-sensitive mutations in the histone folds can be specifically suppressed by overexpressing the other TAF octamer components in vivo. Our results indicate that the TAF octamer is similar both in stoichiometry and histone fold interactions to the histone octamer component of chromatin.
UR - http://www.scopus.com/inward/record.url?scp=0034892335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034892335&partnerID=8YFLogxK
U2 - 10.1038/90408
DO - 10.1038/90408
M3 - Article
C2 - 11473260
AN - SCOPUS:0034892335
SN - 1072-8368
VL - 8
SP - 695
EP - 700
JO - Nature Structural Biology
JF - Nature Structural Biology
IS - 8
ER -