Abstract
Homotopy continuation is an efficient tool for solving polynomial systems. Its efficiency relies on utilizing adaptive stepsize and adaptive precision path tracking, and endgames. In this article, we apply homotopy continuation to solve steady state problems of hyperbolic conservation laws. A third-order accurate finite difference weighted essentially non-oscillatory (WENO) scheme with Lax-Friedrichs flux splitting is utilized to derive the difference equation. This new approach is free of the CFL condition constraint. Extensive numerical examples in both scalar and system test problems in one and two dimensions demonstrate the efficiency and robustness of the new method.
Original language | English (US) |
---|---|
Pages (from-to) | 332-346 |
Number of pages | 15 |
Journal | Journal of Computational Physics |
Volume | 250 |
DOIs | |
State | Published - Oct 1 2013 |
All Science Journal Classification (ASJC) codes
- Numerical Analysis
- Modeling and Simulation
- Physics and Astronomy (miscellaneous)
- General Physics and Astronomy
- Computer Science Applications
- Computational Mathematics
- Applied Mathematics