@inproceedings{8a35f934d74e47718ea39742814048b5,
title = "A hyperplane-based algorithm for semi-supervised dimension reduction",
abstract = "We consider the semi-supervised dimension reduction problem: given a high dimensional dataset with a small number of labeled data and huge number of unlabeled data, the goal is to find the low-dimensional embedding that yields good classification results. Most of the previous algorithms for this task are linkage-based algorithms. They try to enforce the must-link and cannot-link constraints in dimension reduction, leading to a nearest neighbor classifier in low dimensional space. In this paper, we propose a new hyperplane-based semi-supervised dimension reduction method - the main objective is to learn the low-dimensional features that can both approximate the original data and form a good separating hyperplane. We formulate this as a non-convex optimization problem and propose an efficient algorithm to solve it. The algorithm can scale to problems with millions of features and can easily incorporate non-negative constraints in order to learn interpretable non-negative features. Experiments on real world datasets demonstrate that our hyperplane-based dimension reduction method outperforms state-of-art linkage-based methods when very few labels are available.",
author = "Huang Fang and Minhao Cheng and Hsieh, {Cho Jui}",
note = "Publisher Copyright: {\textcopyright} 2017 IEEE.; 17th IEEE International Conference on Data Mining, ICDM 2017 ; Conference date: 18-11-2017 Through 21-11-2017",
year = "2017",
month = dec,
day = "15",
doi = "10.1109/ICDM.2017.19",
language = "English (US)",
series = "Proceedings - IEEE International Conference on Data Mining, ICDM",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "101--110",
editor = "George Karypis and Srinivas Alu and Vijay Raghavan and Xindong Wu and Lucio Miele",
booktitle = "Proceedings - 17th IEEE International Conference on Data Mining, ICDM 2017",
address = "United States",
}