Abstract
Oxynitrides have been explored extensively in the past decade because of their interesting properties, such as visible-light absorption, photocatalytic activity and high dielectric permittivity. Their synthesis typically requires high-temperature NH3 treatment (800-1,300 °C) of precursors, such as oxides, but the highly reducing conditions and the low mobility of N3- species in the lattice place significant constraints on the composition and structure-and hence the properties-of the resulting oxynitrides. Here we show a topochemical route that enables the preparation of an oxynitride at low temperatures (<500 °C), using a perovskite oxyhydride as a host. The lability of H-in BaTiO3-xHx (x ≤ 0.6) allows H-/N3- exchange to occur, and yields a room-temperature ferroelectric BaTiO3-xN2x/3. This anion exchange is accompanied by a metal-to-insulator crossover via mixed O-H-N intermediates. These findings suggest that this 'labile hydride' strategy can be used to explore various oxynitrides, and perhaps other mixed anionic compounds.
Original language | English (US) |
---|---|
Pages (from-to) | 1017-1023 |
Number of pages | 7 |
Journal | Nature Chemistry |
Volume | 7 |
Issue number | 12 |
DOIs | |
State | Published - Dec 1 2015 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Chemical Engineering