A lightweight unsupervised adversarial detector based on autoencoder and isolation forest

Hui Liu, Bo Zhao, Jiabao Guo, Kehuan Zhang, Peng Liu

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Although deep neural networks (DNNs) have performed well on many perceptual tasks, they are vulnerable to adversarial examples that are generated by adding slight but maliciously crafted perturbations to benign images. Adversarial detection is an important technique for identifying adversarial examples before they are entered into target DNNs. Previous studies that were performed to detect adversarial examples either targeted specific attacks or required expensive computation. Designing a lightweight unsupervised detector is still a challenging problem. In this paper, we propose an AutoEncoder-based Adversarial Examples (AEAE) detector that can guard DNN models by detecting adversarial examples with low computation in an unsupervised manner. The AEAE includes only a shallow autoencoder that performs two roles. First, a well-trained autoencoder has learned the manifold of benign examples. This autoencoder can produce a large reconstruction error for adversarial images with large perturbations, so we can detect significantly perturbed adversarial examples based on the reconstruction error. Second, the autoencoder can filter out small noises and change the DNN's prediction on adversarial examples with small perturbations. It helps to detect slightly perturbed adversarial examples based on the prediction distance. To cover these two cases, we utilize the reconstruction error and prediction distance from benign images to construct a two-tuple feature set and train an adversarial detector using the isolation forest algorithm. We show empirically that AEAE is an unsupervised and inexpensive detector against most state-of-the-art attacks. Through the detection in these two cases, there is nowhere to hide adversarial examples.

Original languageEnglish (US)
Article number110127
JournalPattern Recognition
Volume147
DOIs
StatePublished - Mar 2024

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Computer Vision and Pattern Recognition
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'A lightweight unsupervised adversarial detector based on autoencoder and isolation forest'. Together they form a unique fingerprint.

Cite this