Abstract
The Dynamic Facility Layout Problem (DFLP) is designing a facility over a multi-period planning horizon where the interdepartmental material flows change from one period to the next one due to changes in product demands. The DFLP is used while designing manufacturing and logistics facilities over multiple planning periods; however, it is a very challenging nonlinear optimization problem. In this paper, a zone-based block layout is used to design manufacturing and logistics facilities over multiple planning periods. A zone-based block layout inherently includes possible aisle structures, which can easily be adapted to different material handling systems. The unequal area DFLP is modeled and solved using a zone-based structure where the dimensions of the departments are decision variables, and the departments are assigned to flexible zones with a pre-structured positioning. A matheuristic approach, which combines concepts from Tabu Search (TS) and mathematical programming, is proposed to solve the zone-based DFLP on the continuous plane with unequal area departments. The TS determines the relative locations of departments and their assignments to zones while their exact locations and shapes are calculated by the mathematical programming. Numerical results for a set of test problems from the literature showed that our proposed matheuristic approach is promising.
Original language | English (US) |
---|---|
Pages (from-to) | 1374-1383 |
Number of pages | 10 |
Journal | Procedia Computer Science |
Volume | 108 |
DOIs | |
State | Published - 2017 |
Event | International Conference on Computational Science ICCS 2017 - Zurich, Switzerland Duration: Jun 12 2017 → Jun 14 2017 |
All Science Journal Classification (ASJC) codes
- General Computer Science