A method for identifying and visualizing foreign particle motion using time resolved particle tracking velocimetry

N. D. Cardwell, P. P. Vlachos, K. A. Thole

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Gas turbines for aircraft are designed for operation with a clean inlet air flow. This ideal operational condition is often violated during take-off and landing, where the probability of particle ingestion is high with sand and dirt being the most commonly observed foreign particles. Current research on particle ingestion has identified several mechanisms that contribute to performance degradation in the turbine: erosion of internal and external surfaces; and flow blockages of film-cooling holes and internal cooling passages. The focus of the study given in this paper is to present a method that identifies the motion of foreign particles within an internal ribbed passage. The method uses a high-resolution, flowfield interrogation method known as Time-Resolved Digital Particle Image Velocimetry (TRDPIV). Observations from the two-phase flows showed that particle collisions occurred more frequently on the upstream surface of the ribs, especially in the inlet region. Results from these collisions included substantial particle breakup and a particle rebounding phenomenon between the upper and lower walls. Comparisons are made to LES predicted particle trajectories indicating some agreement, but also phenomena that are not predicted due to the inherent assumption of the modeling.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Turbo Expo 2009
Subtitle of host publicationPower for Land, Sea and Air
Pages979-990
Number of pages12
EditionPART B
DOIs
StatePublished - 2009
Event2009 ASME Turbo Expo - Orlando, FL, United States
Duration: Jun 8 2009Jun 12 2009

Publication series

NameProceedings of the ASME Turbo Expo
NumberPART B
Volume3

Other

Other2009 ASME Turbo Expo
Country/TerritoryUnited States
CityOrlando, FL
Period6/8/096/12/09

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'A method for identifying and visualizing foreign particle motion using time resolved particle tracking velocimetry'. Together they form a unique fingerprint.

Cite this