A methodology to support product family redesign using a genetic algorithm and commonality indices

Henri J. Thevenot, Jyotirmaya Nanda, Timothy W. Simpson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Scopus citations

Abstract

Many of today's manufacturing companies are using platform-based product development to realize families of products with sufficient variety to meet customers' demands while keeping costs relatively low. The challenge when designing or redesigning a product family is in resolving the tradeoff between product commonality and distinctiveness. Several methodologies have been proposed to redesign existing product families; however, a problem with most of these methods is that they require a considerable amount of information that is not often readily available, and hence their use has been limited. In this research, we propose a methodology to help designers during product family redesign. This methodology is based on the use of a genetic algorithm and commonality indices - metrics to assess the level of commonality within a product family. Unlike most other research in which the redesign of a product family is the result of many human computations, the proposed methodology reduces human intervention and improves accuracy, repeatability, and robustness of the results. Moreover, it is based on data that is relatively easy to acquire. As an example, a family of computer mice is analyzed using the Product Line Commonality Index. Recommendations are given at the product family level (assessment of the overall design of the product family), and at the component level (which components to redesign and how to redesign them). The methodology provides a systematic methodology for product family redesign.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences - DETC2005
Subtitle of host publication31st Design Automation Conference
Pages1009-1018
Number of pages10
StatePublished - 2005
EventDETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Long Beach, CA, United States
Duration: Sep 24 2005Sep 28 2005

Publication series

NameProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005
Volume2 B

Other

OtherDETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Country/TerritoryUnited States
CityLong Beach, CA
Period9/24/059/28/05

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint

Dive into the research topics of 'A methodology to support product family redesign using a genetic algorithm and commonality indices'. Together they form a unique fingerprint.

Cite this