A model-independent analysis of neutrino flares detected in IceCube from X-ray selected blazars

IceCube Collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

Blazars are among the most powerful steady sources in the Universe. Multi-messenger searches for blazars have traditionally focused on their gamma-ray emission, which can be produced simultaneously with neutrinos in photohadronic interactions. However, X-ray data can be equally vital to constrain the SED of these sources, since the hadronically co-produced gamma-rays could get absorbed by the ambient photon fields and cascade down to X-ray energies before escaping. In this work, we present the outline for an untriggered, time-dependent analysis of neutrino flares from the direction of X-ray selected blazars using 10 years of IceCube data. A binomial test will be performed on the population to reveal if a subcategory of sources has statistically significant emission. The sources are selected from RomaBZCat, and the p-values and best-fit flare parameters are obtained for each source using the method of unbinned likelihood maximisation.

Original languageEnglish (US)
Article number971
JournalProceedings of Science
Volume395
StatePublished - Mar 18 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: Jul 12 2021Jul 23 2021

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'A model-independent analysis of neutrino flares detected in IceCube from X-ray selected blazars'. Together they form a unique fingerprint.

Cite this